

エージェントシステム プラットフォーム

自動運転に必要な「危険予知エージェント」

優良なドライバの特徴として危険予知能力が高いことがあります。危険予知エージェントを搭載する することで危険予知能力を取り入れることができます。

どのようにエージェントを構築するのか?

エージェントの知能部分をモデルベースで開発します。具体的には決定表を用いて知能をルールとして表 現します。

例えば、図1は危険予知エージェントがドライバーにヘッドアップディスプレイ(HUD)で雪道での危険 予知を警告している様子を示しています。雪道運転での知識を決定表でモデリングしたものが表1です。

図1 危険予知エージェントシミュレーション画面

わだちルール	Υ	Υ	Υ	N	Υ	Υ	Υ
対向車	Υ	Υ	Υ		N		
車速	> 40	> 40	> 40			<= 40	
πс	>= 3	< 3	< 3				
運転手特性	== SNOW_INEXPERIENCE	== SNOW_INEXPERIENCE	== SNOW_EXPERIENCE				== SNOW_UNDEF
メッセージ1	わだち注意	対向車と同じわだち	対向車と同じわだち	わだち空	わたち空	わだち空	わだち空
メッセフードブラ	速度注章	衝突の危険	衝突の危険	衝空空	衝空空	衝空空	衝空空

表1 危険予知ルールモデル

▶ 危険予知エージェント動画 URL

http://www.zipc.com/product/ZIPC R&B/video/

https://youtu.be/aaBo6BuVRts

ルールベースをモデルベースにすることで従来の課題を解決

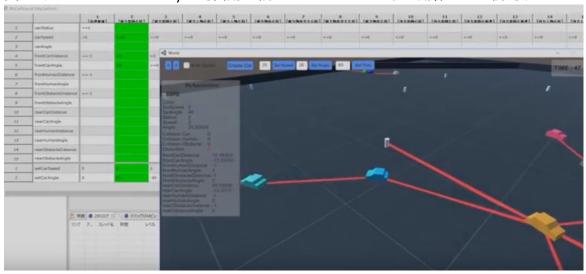
従来のエキスパートシステムで用いていたIF-THEN表記法では再利用、分割、階層化を行う事が難しく、 ルールスパゲティ、ルール爆発を起こしていました。そこで、ルールにモデルベースを導入することでこれ らの課題を解決し、マルチエージェントの構築もしやすくなりました(図2)。

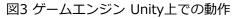
(*)決定表の書式はSpecification of single-hit decision table(決定表) ISO5086 (JIS X0125)に対応 (*) TTC(Time-To-Collision)

〒222-0033 神奈川県横浜市港北区新横浜3-1-9 アリーナタワー TEL:045-473-2816

詳細はinfo@zipc.comまでお問い合わせください。http://www.zipc.com/

お気軽にお問い合わせを! > info@zipc.com ~




エージェントシステム プラットフォーム

様々な環境と連携したエージェント開発

様々な環境と連携してエージェント開発を行えます。

図3はゲームエンジンUnity上で自動運転ルールエージェントを動作させた例です。

▶判断エージェント動画URL http://www.zipc.com/product/ZIPC R&B/video/ https://youtu.be/XgNImPGhzVo

様々なドメインのエージェント開発

ROS(Robot Operating System)などの環境と協調 してエージェント開発を行えます。

図4はヒューマノイドロボット"NAO"の開発環 境"Choregraphe"とZIPC Designer R&Bを用い て"NAO"に横断歩道を歩行する判断エージェントを構 築した例です。

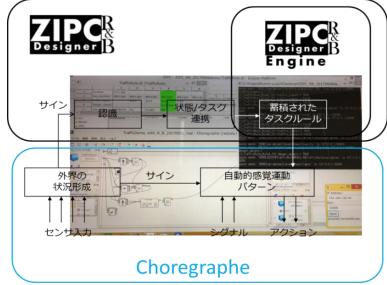


図4 ヒューマノイドロボットエージェント

▶判断エージェント動画URL http://www.zipc.com/product/ZIPC R&B/video/ https://youtu.be/HuOkGi3AS0A

- Con Art ommunication **T**echnolo **S**ystems echnology
- ●自動運転システムとルールベースシステムに関する記事 http://www.nttdata.com/jp/ja/insights/trend keyword/2016052701.html
- ●エッジインテリジェントを実現するルールベースシステム~自動運転システムの場合~ http://www.zipc.com/instance/files/vol19/vol19-13.pdf

キャッツ株式会社