
1. 
Introduction

Recently, robust firmware is getting more and 
more important. Most mechanical products 
include microprocessor and have the 
firmware to operate the system. These 
products are frequently called ‘Mechatronic 
products’ . Products such as automobiles, 
robots, printers, cameras, even washing 
machines can now be called mechatronics 
products which are controlled by firmware, 
because all of them are controlled by 
microprocessors and firmware rather than just 
by mechanical control systems.
For mechatronic products, usually the quality 
of the firmware is a key element because 
control is often deeply interrelated with the 

■ABSTRACT

In firmware development of mechatronic systems, the computer simulation 
and virtual environment have become important to reduce the development 
cost and the lead time. Since most mechanical systems are managed by 
microprocessors and they are required to do more and more  complicated 
tasks, the virtual prototype using computer simulation techniques has already 
been replacing the real prototype rapidly. However, in practical development 
for robust firmware, in practice, there are still difficulties in the development of 
robust firmware using virtual prototypes after the initial structure of the 
software development because the mechatronic systems are sophisticated 
inter-disciplinary systems which include several different fields of physics, 
such as mechanical, electrical, and electronic. 
In this investigation, a more efficient collaboration concept of the simulation 
environment for stable firmware development at an early stage is proposed, 
and it is shown using several examples to be possible. Thus, through these 
examples, the needs of the virtual environment for the robust firmware 
development of mechatronic system and its advantages are introduced.

More Robust Firmware Development of

Mechatronic System 

at Early Stage using Virtual Environment

1995
1997 
1999
2000

Ph.D. at Mechanical Engineering, University of Illinois, Chicago, IL, USA
Senior Researcher, 1st R&D Division, Agency for Defense Development, Korea 
(~Present) Professor, Department of Mechanical Engineering, KyungHee University, Korea
(~Present) Chairman of FunctionBay Inc., Korea

20

[Figure 1]

contemporary Development Flow

J. H. Choi
Professor, Mechanical Engineering, Department
Kyunghee University (Korea)
E-Mail: jhchoi@khu.ac.kr

quality. Furthermore, even a small bug in the 
firmware can cause a severe accident.

Furthermore, nowadays mechatronic 
products are getting more and more complex. 
So firmware is also getting more and more 
complex and larger in scale. On the other 
hand, it is usually desired that the 
development costs and the development lead 
time are reduced. [6], [8]

In mechatronic products, the firmware is 
usually used to control the mechanical 
system of the product. But firmware 
development is a different discipline from the 
development of mechanical systems. So it is 
very difficult to perform integrated testing both 
of them together during the early stage of the 

development. In order to test and validate the 
firmware, the mechanical system should be 
ready in advance and the firmware must be 
compiled and downloaded to the mechanical 
system. This means that the firmware must 
be able to be compiled and executed to 
control the mechanical system to test if it can 
control the system as intended at an early 
stage of the development. 

On the other hand, from the viewpoint of a 
mechanical system engineer, the mechanical 
system which works as the firmware controls 
must be developed before the integration test. 
Figure 1 shows the contemporary 
development process in mechatronic 
industries. Eventually, the integration test 
between the firmware and the mechanical 



More Robust Firmware Development of Mechatronic System at Early Stage using Virtual Environment
J.H. Choi

21

[Figure 2] 

Development Flow using Virtual Environment

[Figure 3]

Improvement of the resource distribution

system usually is done at the late stage of the 
development. Since the integration test 
cannot be started until a late stage of the 
development, even if any bug or any conflict 
of the specification or interface is discovered, 
it is not easy to change the specification or fix 
the bug. 

Bugs in the firmware can cause lots of 
troubles, and wastes time and money. So it is 
essential to find and fix the bugs at as early a 
stage of development as possible by 
thorough validation and debugging. In 
addition, under the current process frequently 
used by most companies, conflicts in the 
specifications are often not found until the late 
stage, and when this happens, it is very 
difficult to fix the problem. Either a quick but 

inadequate firmware solution must be made 
or a very expensive re-design must be made.

Therefore, an innovative environment in 
which to perform the integration test from the 
early stage is needed. The virtual 
environment using the virtual mechanical 
systems which do not require the use of real 
hardware can be an efficient solution. [1], [2]

There are many advantages to using a virtual 
mechanical system. Firstly, the virtual 
mechanical system can be built earlier than 
the real hardware and costs cheaper than the 
real hardware to develop. And it is much 
easier to change the model. Secondly, the 
virtual mechanical system is very useful for 
reproducing problems under the same 

circumstance and it is possible to generate 
very dangerous situations or situations which 
are very difficult to cause or replicate with the 
real hardware. Thirdly, with real hardware, it 
is difficult to see the behavior of parts inside 
the machine during testing. On the other 
hand, it is very easy to investigate the 
behavior of these internal parts in the virtual 
system. The proposed firmware development 
flow is shown in Figure 2. Using this proposed 
development flow, the firmware and the 
mechanical system can be tested together 
even in very early stages of the development. 
There can be continual communication and 
interaction throughout the development 
process. 

Figure 3 shows the required resource 
diagram or completeness of software during 
project time. Usually software engineers are 
extremely busy at the end of development 
which can be a cause for the introduction of 
bugs very easily. Moreover it is very difficult 
to modify the product at the end of 
development since it is not easy to figure out 
the main problem and just asking other team 
to fix it

Using the proposed development flow in 
Figure 2, the resource usage curve can be 
shifted to the left and overall resource usage 
will decrease. And it can be much 
comfortable and efficient to obtain robust 
software of the system.

In addition, the environments where the 
product will be used can be very diverse. Lots 
of the uncertainties such as the temperature, 
wear or tear of the machine, or foreign 
substances can change the operational 
condition of the product. In order to develop a 
robust product, lots of tests are required to 
make the system operate optimally under 
these uncertainties. But it can be almost 
impossible to do with real hardware at an 
early development stage. This can be 
achieved by using the virtual environment and 
it can save time and cost significantly.



22

2. 
Integrated Virtual Environment 
For Mechatronic System

The virtual environment for the mechatronics 
area has been developing for long time. 
Several years ago, similar methods which 
used co-simulation interface techniques 
between RecurDynTM (Plant), Simulink® 
(Controller), and Simplorer® (Circuit) were 
introduced. With this interface, it was possible 
to test and validate the control algorithm 
developed by Control & Circuit simulation 
programs with the virtual plant modeled in a 
multibody dynamic tool. These techniques 
were also used to develop the control 
algorithm for a tank [1] and a LIM (Linear 
induction Motor) drive system 

for a rail vehicle [2].

In 2008, ChTM [3], the script engine which 
completely implements the C language was 
adopted as the script engine of CoLink 
(CoLink is the control modeling tool 
developed by FunctionBay Inc.,), and the 
virtual environment using RecurDynTM, 
CoLinkTM, and ChTM script engine was 
proposed [4]. In this paper, a realistic 
nonlinear dynamic model with an electrical 
motor and an electronic control system was 
successfully simulated using this integrated 
virtual environment. The electric forklift 
vehicle model was modeled in RecurDynTM, a 
PMSM (Permanent Magnet Synchronous 
Motor) was modeled in CoLink, and the 
controller was modeled with C code 

embedded in a Ch block in CoLink. Figure 4 
shows the schematic diagram for electric 
forklift integrated system simulation. 

The integrated system simulation methods 
and the virtual environment were validated in 
this study. In this study, all of the elements, 
including block modeling, script modeling, 
and CAD modeling, were all performed in one 
integrated virtual environment. Furthermore, 
the firmware was almost completely 
developed using only this virtual development 
environment. 

Since 2009, a new co-simulation interface 
between ZIPCTM and RecurDynTM has been 
developed. The purpose of this interface is to 
enable testing and validation from an early 

stage using the STM (state transition matrix) 
model provided by ZIPCTM with a RecurDynTM 
model. In particular, since ZIPCTM can 
simulate the STM model even before C 
source code is developed, this new 
environment has the advantage that it is 
possible to perform the integration test 
between the firmware and the mechanical 
system from the early stage even without the 
source code. Figure 5 shows the concept of 
the hybrid car model using the virtual 
environment. In this model, the vehicle 
consists of rigid bodies, flexible bodies, and 
various kinematic constraints. Also, motors 
and circuits are modeled in software such as 
CoLink, Simulink®, and Simplorer®. The 
control firmware developed by ZIPCTM can be 
included in this environment as well. The 

[Figure 4]

Integrated model of Forklift system

[Figure 5]

Hybrid car model using 

the virtual environment

[Figure 6]

Real Mindstorms model



23

simulation results show significant advantage 
using such a virtual environment to develop 
more complete firmware at the early 
development stage.

3. 
Validation by Lego MindStorms® 
examples

Mindstorms® is the programmable robotics kit 
consisting of Lego blocks, motors, sensors, 
and other parts as well. Mindstorms® was 
used to validate the usefulness of the 
proposed virtual environment using ZIPCTM 
and RecurDynTM.
Figure 6 shows the Mindstorms® robot which 
can follow a line and the firmware which 
processes data from the sensor and controls 

the motors [5]. This robot was modeled in 
RecurDynTM, and the firmware to process the 
sensor events was developed using ZIPCTM. 

For the sensor modeling described in Table 1, 

the light sensor was modeled in the C 
language mathematically and embedded in 
CoLink through the ChTM script engine. The 
sound sensor and the ultrasonic sensor 
events were not modeled in the virtual plant 

(RecurDynTM). For these 2 sensors, the 
sensor events were input into the ZIPCTM 
interface during the simulation manually and 
the action commands were sent to 
RecurDynTM [6].

The VIP function of ZIPCTM was used for the 
co-simulation between RecurDynTM and 
ZIPCTM. And the firmware downloaded to the 

robot was generated using the ZIPCTM 
generator from the ZIPCTM model 
co-simulated with the RecurDynTM model as 
shown in Figure 7. Figure 8 shows the 
Simulation using an STM in ZIPCTM

In this model, the line tracer algorithm 
embedded in this robot was intentionally 
written to contain a bug. The bug produced 

caused erratic motion in the robot. 
Remarkably similar behavior with the real 
robot caused by the intentional bug was 
captured in the virtual model as well. From 
this, it can be inferred that this virtual 
environment is useful for finding bugs in 
firmware code at the early development stage 
without the use of real hardware.

Degrees of the Freedom 10

6
(rigid)

4
(revolute)

3
(sound, light, ultrasonic)

3
(servo motors)

# of bodies

# of joints

# of sensors

# of actuators

[Figure 7]

Co-simulation of ZIPCTM and RecurDynTM

[Figure 8]

Simulation using STM in ZIPCTM

[Table 1]

model specification of line tracer robot

Real System

Virtual System

Firmware

C source code

ZIPCTM Model

Plant

Real Mindstorms®

RecurDynTM Model

[Table 2]

comparison between Real system and Virtual system

More Robust Firmware Development of Mechatronic System at Early Stage using Virtual Environment
J.H. Choi



24

The figure 9 shows a comparison between 
the test results of the real robot and the 
simulation results of the virtual model. 

Another Mindstorms® example is a simple 
forklift model that has tracks that have a huge 
number of degrees of freedom. This vehicle is 
a very complicated nonlinear system [7]. The 
specifications of the system is illustrated in 
Table 3. Even with this kind of complicated 
virtual mechanical model, the co-simulation 
results showed the extremely similar behavior 
with the real model. Figures 10 and 11 show 
the virtual and real motion of the system. 

This example has many more degrees of 
freedom than the first example because this 
model has lots of track bodies. For the sound 

sensor and the touch sensor, the triggering 
events were modeled with a signal chart. And 
the light sensor and the ultrasonic sensor 
were modeled with function expressions to 
calculate the distance between the position of 
the robot and the obstacle (box). Like the real 

robot model, these distances were sent to 
ZIPCTM to be processed.

It is obvious even at the earliest stages of 
development of the forklift robot that its fork 
will have to rise, hold its position, and then 

drop in order for the robot to lift, transport, 
and put down a box. It is possible to 
represent this motion of the fork with a very 
simple linear model, as can be seen by the 
dotted line in Figure 12. This model does not 
contain any uncertainties, such as the 
structural flexibility of the robot, which can 
cause many dynamics effects such as 
vibration of the lifting fork. Designing firmware 
based on such simplified models is inherently 
error prone because these uncertainties can 
cause the firmware’ s algorithm to be unable 
to control the real device. Through a complete 
model which includes such properties as 
structural flexibility in a virtual model, many of 
these uncertainties can be captured even at 
an early stage of firmware development. The 
solid line (vibrating line) in Figure 12 shows 

[Figure 9]

Real Mindstorms vs. 

Virtual Mindstorms

[Figure 10]

Real Mindstorms model

[Figure 11]

RecurDynTM model of the lift robot

[Table 3]

model specification of the lift robot

Degrees of the Freedom 541

96
(rigid, track)

7
(revolute)

4
(sound, light, ultrasonic, touch)

3
(servo motors)

# of bodies

# of joints

# of sensors

# of actuators



25

this kind of effect – the vertical vibration of the 
tip of the lifting fork of the virtual model over 
time. 
Uncertainties like this are always inherent in 
real mechanisms, and they can play a very 
important part in the development of the 
device. Instead of using the simplified model, 
if a virtual model of the device is used in the 
early development, the initial development of 
the firmware can already incorporate many of 
these uncertainties. 

4. 
Summary and Future 
Development

The virtual environment has advantages for 
use in firmware development. With the virtual 

environment, it is possible to test and validate 
the firmware from the early stage of the 
development. And it can save time and cost 
dramatically.

To use the virtual environment, it is required 
to use several kinds of the software. But it is 
true that it is not easy to skillfully as integrate 
several software packages simultaneously. 
So the next task is to develop the easy-to-use 
environment for both the firmware designer 
and the mechanical engineer. Because not all 
users are familiar with both mechanical 
engineering and firmware design, the user 
interface must be very easy to understand 
and intuitive for each of these users [8].

In addition, there are formulation and 

software design topics in the development of 
the virtual development environment that 
require further investigation. For example, the 
firmware operates at a time scale of 
microseconds to milliseconds, but in general 
mechanical system simulation software 
operates at a time scale of milliseconds to 
seconds. So, it is important to find a way how 
to synchronize these different time scales. 

Kunsoo HUH, Jinhwan CHOI and Honghee YOO, 2003, “Development of a Multi-body Dynamics Simulation Tool for 
Tracked Vehicles” (Part II, Application to Track Tension Controller Design), JSME vol. 46, no2, pp. 550-556     

Jaehym Lee, Hyungsoo Mok, Changwan Kim, 2008, “A Modeling of Linear Induction Motor Based Railway 
Propulsion System for α-Simulation of Electric-Mechanical System” ,  KSAE 2008, pp. 598

http://www.softintegration.com/

D.J. Yun, Hyungsoo Mok, K. H. Cho, and J. H. Choi, 2008, “Dynamic simulations for Electric Forklift System driven 
by PMSM drive Using RecurDyn CoLink” , 4th Asian Conference on Multibody Dynamics 2008, pp. 7-11.

Taero Cha, S. T. Kim, D. J. Yun, 2010, “Virtual Firmware development system for Lego® Mindstorms® vehicle using 
RecurDyn® & ZIPC® at early design stage” , 2010 KSAE proceeding, KSAE10-B0172

IEEE/MESA Conference “Firmware Development of Mechatronic System in Virtual Environment using Ch” 2010 
Quintao China.

S. T. Kim, D. J. Yun, K. H. Cho, J. H. Choi, 2010, “The inter-disciplinary simulation environment including the 
firmware and the mechanical system” ,  ACMD2010

OTIS Central R&D Center, Technical meeting & Discussion “Real Digital Prototyping for elevator system” 2010

[Figure 12]

Height of the tip of the lift

REFERENCES
[1]

[2]

[3] 

[4]

[5]

[6]

[7]

[8]

More Robust Firmware Development of Mechatronic System at Early Stage using Virtual Environment
J.H. Choi


