移動体端末開発における Drawrial 適用効果 について

パナソニック MSE 株式会社 移動体端末事業部 要素開発六部 開発三課

野崎 和久

1.まえがき

近年、移動体端末はユーザの様々なニ ーズに応える為に多様な機能の追加が行 われてきた。その結果、移動体端末に占 めるソフトウェアの比率も高まりソフト ウェア開発量も膨大となっている。しか し1 モデルの開発期間は変わらない為、 開発に要する工数は機能の多様化、複雑 化とは反比例して、削減が求められてい る現状にある。

移動体端末のソフトウェア開発におけ る設計工程では、画面遷移の設計の割合 は2割から3割、仕様変更などメンテ ナンス作業を含めれば更に多くを占める。 開発全体から見ると1/5程度と多くの 工数を要している場合が多い。この効率 化を行う為には、設計工程の改善が必要 不可欠である。本稿では、移動体端末開 発の設計工程を対象に、支援ツールによ る開発効率の向上をめざした取組内容に ついて紹介する。

2.移動体端末開発における設計工程効 率化の課題

今回の取り組みにおいては、移動体端 末開発の設計工程における以下のような 画面遷移設計時の問題に注目した。

(1) 仕様決定に時間がかかる

仕様決定時の判断材料として画面遷移 図等が使用されるが、画面遷移図のみで は直感的に機能の把握が困難である。こ の為、仕様決定までにかかる工数が増大 してしまう。

(2) 通常の描画ツールで画面作成した場 合の工数圧迫

従来、設計図へ移動体端末の画面を記 述する場合、一般的な描画ツール(以下、 描画ツールという)を使用していたが、 汎用ツールである為、画面の作成時に手 間がかかり工数増加の要因であった。又、 画面内で共通するパーツの再利用性も低 く生産性低下の原因であった。

(3) 画面仕様変更時の設計図への反映

描画ツールでは、背景などの画面パー ツに画面仕様の変更が生じた場合、その パーツが使用されるすべての画面に対し て変更作業が発生する為、多くの工数を 必要とする。

(4) 設計時の抜け漏れによる仕様変更の 発生

移動体端末の開発では、画面仕様設計 の際に画面遷移図を用いる為、必要な遷 移を見落とすなど、抜けや漏れが発生し やすい。

(5) 開発工程のつながり

描画ツールで作成した場合、画面遷移 図は設計書の範囲で収まってしまう。開 発全体を効率化する為には、設計工程で の成果物を次の工程へとスムーズに引き 継ぐ事が重要な課題となってくる。

3. 画面遷移図作成支援ツール「Drawrial」 による設計手法の提唱

以下に述べる機能により、設計支援ツ ールである「Drawrial」を開発工程に適 用させることで、画面遷移設計における 従来の課題を克服し、仕様の検討から設 計書の作成までの効率向上が可能か検討 を行った。

(1) 仕様決定の早期化

Drawrial に実装されている設計レビ ュー機能を使用することで、仕様を作成 した次の瞬間から動的に動作を確認する ことができる。これにより移動体端末の キャリアなどへ明確な仕様が提示でき、 認識合わせが容易になると考えられる。 その結果、開発の早期の段階で認識のず れを軽減させ、仕様決定における工数に ついて 20% 程度の削減を図る。

(2) 専用ツールによる画面遷移図作成工 数の削減

画面遷移図作成に特化したツールを使 用する事で画面遷移図作成における工数 を削減する。特に次の点が通常の描画ツ ールよりも優れていると考えられる。

- 使いやすい直感的なユーザインタフ ェース
- ・ 作成した画面仕様のメンテナンス性

(3) 仕様変更時における部品化による反映作業の効率化

移動体端末は、複数のパーツによって 構成されて一つの画面ができている。 Drawrial ではパーツの再利用性を最大 限まで高める為に、各画面で共通するパ ーツについては、全て同一の物を使用す る「部品化」という概念を導入した。こ れによりパーツに仕様変更があった場合 でも、元のパーツを変更するだけで当該 パーツを使用して作成された全ての画面 に対して一括で変更が可能になり、メン テナンス作業効率の大幅な向上を図る。

(4) 画面遷移図の設計における抜け漏れ 防止による品質の向上

ユーザインタフェース設計時の成果物 である仕様データから画面を状態毎に管 理し、状態遷移表へとコンバートする仕 組みを実現する事で、システム設計への 連携がスムーズに行え、設計全体の大幅 な効率化につなげることが可能となる。 又、ZIPCを使用して状態遷移表を作成 する事で静的チェック等の検証が可能に なり、従来に比べ抜けや漏れの防止と、 設計時の生産性、品質の向上を図る。

(5) 各工程への引継ぎ

ユーザインタフェース設計時において

Drawrial で作成した設計データから、 移動体端末における資源データを自動的 に生成させる事で、開発工程における作 業工数について 10 - 20% 程度削減す る効果を図る。

検査工程への取組としては、設計時に 作成した仕様データから検仕データを自 動で生成する事により、工程間の連携を 強化する。また、検査工程における作業 自動化を進め、納期短縮、費用削減、品 質向上を図る。

以上のことから、移動体端末1モデル の開発において各工程での連携が強固と なり、開発全体における効率、品質の向 上が期待できる(図1参照)。

図1: Drawrial と ZIPC の連携概要図 (Fig.1 The cooperation outline figure of Drawrial and ZIPC)

4.取り組みにおける効果

今回の導入目的である、工数増大の要 因であった課題について以下にまとめる。

(1) 仕様決定に時間がかかる

Drawrial に実装される設計レビュー 機能の導入により、ソフトウェア動作モ デルの可視化が可能となり、設計当初の システム分析やレビューには非常に有効 であった。この為、開発者と顧客へ仕様 を水平展開する効率が上り、およそ 1/6 の工数削減につながった。しかし、ユー ザインタフェース設計工程への適用にお いては、上流工程の途中から既に工程が 開始されている為、仕様変更の反映/更新 に予想より 1.4 倍の工数がかかる結果 となった。

(2) 通常の描画ツールで画面作成した場合の工数圧迫

Drawrial を導入することで、直感的 な操作性と「部品化」によるパーツの再 利用性の向上により画面作成時における 工数を 15 ~ 25% 程度、削減できた。 (**表1**: 1 ファイルあたりの作成時間参 照)

(3) 画面仕様変更時の設計図への反映

実際に設計工程全体での画面仕様の変 更を想定した場合、設計図への反映作業 における通常の描画ツールと Drawrial を比較してみた結果が表1(画面仕様に 変更があった場合の比較)である。 Drawrial での変更工数は一つの共通部 品変更あたり平均 10 画面の更新時に おける工数から推定した期待値である。 (約 600 画面の更新時変更される部品数 = 約 60 部品)

	描画ツール	Drawrial
1ファイル 作成時間	2-3(h)	1.5-2(h)
変更数	約600	約60
変更工数	2.5 人月	0.25 人月以下

<u>表1</u> 画面仕様に変更があった場合の比較 (Table 1 Comparison when screen specification included medicication)

上記の結果から、Drawrial を使用す る事で仕様変更時の設計図への変更部位 反映作業を、現状の 10% 以下に削減す る事が期待できる結果となった。

(4) 設計時の抜け漏れによる仕様変更の 発生

システム設計工程への移行については、 ユーザインタフェース設計時の成果物で ある設計データに対してモデリング化を 行い、状態を洗い出し管理する作業に予 想より大幅な工数がかかり、今回の取組 では完全な連携を行う事ができない結果 となった。ただし、他システムの事例に おいては、ZIPC を導入する事で、設計 の抜けや漏れを防ぐ為のレビュー工数を 1/7 に削減できたという実績がある為、 今後の課題として連携実現手段を検討し ていきたい。

(5) 開発工程のつながり

Drawrial の画面レイアウトデータか ら直接資源データを生成する仕組みの導 入により、全体の 20% 程度の資源デー タが自動で生成可能となった。又、設計 データが実開発コードとなる為、画面ユ ーザインタフェースにおける仕様変更、 更新を容易に行う事が可能となり大きな 効果があると考えられる。

検査工程においては、雛形となる検仕 データの自動生成を実現し、検仕データ の作成工数をかぎりなく 0 に近づける 事ができた。しかし、設計工程における 画面レイアウトデータ作成工程において 1 ドット単位での正確性を求められる ことから、設計データの作成工数が当初 の計画に比べ大幅に工数が必要となった。 この結果、検査工程全体としては、25% 程度の効率化に留まった。

5.**あとがき**

Drawrial は、適切な運用を行えば大 変効果的なツールである。Drawrial の 誕生からその進化の軌跡を眺めさせて頂 いた訳だが、現状に満足せず今後も更な る飛躍を遂げていくと信じている。今後 は、今回の利用資産、適用経験を生かし、 Drawrial、ZIPC のポテンシャルを更に 活用し、更なる生産性と品質の向上が課 題と考えている。

今回は、駆け足で取組全体の概要を説明 した為、各工程における詳細な内容につ いて記述できなかったが、今後、別の機 会があれば紹介させていただければと思 う。