Extended Hierarchy State Transition Matrix Design Method

-— \Version2.0 —

g
Ll
g

Masahiko Watanabe
a CATS 1997

Author's biography

Early 1980s: Engaged in VOSIII database language compiler and CAL.
Late 1980s: Engaged in the real-time monitor control system, RTOS.
Early 1990s: Engaged in ZIPC

Publlshed papers and books

Nikkei Electronics, "Real-time CASE Tools for Supporting Basic Design,"” January 6, 1992.
CQ Shuppan Interface, "ZIPC for Real-Time Applications and System Development,” May,
July, August, 1996.

Electronics Development Institute Press, "CASE for Real-time Control"

Electronics Development Institute Press, "Implementing CASE in the Real-time
Environment"

53rd Convention of Japan Information Processing Society, "ZIPC: An Environment for
Developing a Microcomputer Embedded System Using the State Transition Matrix"

53rd Convention of Japan Information Processing Society, "Definition of State Transition
Matrix Types: The Basic Concept"

The Extended-Hierarchy State-Transition Matrix Design Method, Version 2.0

February 12, 1997
Author: Masahiko Watanabe

Copyright CATS, 1997
Reproduction and copy without permission are prohibited.

PP

Table of contents

Ta1goT 011 o] o FU TP PSRPPPPIIN 1
Format of the state transition MAatriX (STM)ii oo 3
Format of the extended hierarchy state transition matrix (EHSTM)ccoviiiiiiiiiiiiiiinnnnn. 5
VT o | PP P PP UPPRTI 9
o S V=T o | Y 1= TP PTTRUPPPP 9
41.1 Variable MEMOIY EVENT........oooiiiiiii et eaaaaanas 9
4.1.2 INTEITUPL EVENL...... ettt e e e e et e e et e e e e aa e e e eba e e eeneas 10
4.1.3 IN-MAIT BVENT ... ettt e e e eeeaaaas 12
4.1.4 FUNCHON-CAll @VENTeei e 13
4.2, HOW t0 ACCESS VANIADIESoiiiiiiiiiii et e e e e 14
4.2.1 MESSAGE BVENL.... .ottt ettt e e e e 14
4.2.2 Flag @VENT e 15
4.3, MiIXEU BVENLS ...ttt e e et e et et r e e e e e et e bbb e e e e e e e tbba e aaaaaaes 16
4.4, Format Of @VENT Cell........ e 19
44.1 EVENE .o 19
4.4.2 EVENT FrAMIE... et a e e e eeaaaaaas 19
4.4.3 MESSAGE BVENL.... .ottt e e e e e 20
4.4.4 Flag @VENT ... e 20
445 IN-MAIT BVENT ... et e e e e eeeaaaaas 20
4.4.6 INTEITUPL EVENL ...ttt et e e et e et e e e e ra e e e eba e e eenens 22
4.4.7 FUNCHON-CAll @VENTeeee e 23
448 THGQEE EVENT ...ttt ettt e e e ettt e e e e e e eetbba e e e e e aaaanes 23
4.4.9 TBISE" BVENT ... et 24
4.4.10 EVENtVIFTUAI fTAMEiii et e s 25
4411 EVENt ACUAI fTAIMEeii i 26
ot A | oo [0 {11 o E TSP 27
4.4.13 "SWItCH" CONAITION ..vvtiiieei it e e e e r e 29
4.4.14 Event-analyzer Start aCtiVItyooooiiiiiiiiii e 31
4.4.15 Event-analyzer nd ACHVILYoooiiiiiiiiiiiie e 31
4.4.16 Event-hit Start @CtiVILYcoouuueiiiiiii e 31
4.4.17 Event-hit @Nd @CHIVILYcooiiiiiiiii e 31
4.4.18 NO action default/elSecoouuueiiiiee e 32
4.4.19 AnalysiS SEQUENCE NUIMDETuuiiieiiieiiii et e e 33
]2 1< TP UPPPT 35
51 EXCIUSIVE STALE ... ettt e e e e e ettt e e e e e aeaes 35
52 CONCUIMTENT STALE ...t e et e e et e e et e e e e aa e e e eaan s 35
5.3, FOrmat Of State CelIlouueeiiiei e 37
5.3.1 == P TP T PR PPPPPPPPPPTTTRTTTN 37
5.3.2 SHALE frAMIE .. et 37
5.3.3 EXCIUSIVE STALE ...t e e e eeeaaaans 37
534 CONCUIMTENT STALE ...t e e e e e e e e e eea s 37
5.3.5 State VIFtUAl frAME ... 38
5.3.6 State aCtual frAMEo 39
5.3.7 StAte STAM ACHIVILYee e e b 40
5.3.8 State MOAE ACTIVILY ... e 40
5.3.9 SEAtE €N ACHIVILY ...vveeie et 40
5.3.10 DefaUIt StALE......coeiiieeiiiie e e e 40
5.3.11 State hierarchy STM Callcooouiiiiiiiii e 41
5.3.12 SYNChroniZed STAte..........iii it 42
1[0 o TR PSPPI 43
6.1. Format of aCtion Celliiiiii e 43
6.1.1. Human language StatemMeNt............oi oo 44
6.1.2. Computer l[anguage StateMENT.........coooiiiiiiii e 44
6.1.3. NS CRAIT . . et e ettt e e e e e eeraaaaas 44
B.1.4. INVANT ccoiiiiiiiiiiiiii 44
6.1.5. N O LS ettt e et e e e e e e e aaa s 45
6.1.6. Event hierarchy STM Call........coouuiiiiii i e 45

Table of contents

6.1.7. Subroutine STM Callcccoviiiiiiiiiiiiiii 47
6.1.8. Library STM Callcoouiiiiiiiiiie et e s a7
6.1.9. Divided action Cellcovvviiiiiiiiiiii 48
6.1.10. EHSTM SYSteM Calluueiiiiiiiiiii et 49
6.1.11. TransSition SYMDOIuuuiiiiii e 49

L T B o I o (PP UPPTTTT 49

To TEANSIHION. c.ciiiiiiiiiiiceee e 51
% T = 0 S 1[0] g I 1Y 0 LT TSP 51
7.1.1 FiXed tranSItiONccoviiiiiiiiiiiiiii 51
7.1.2 MemMONiZed traNSItIONcovviiiiiiiiiii 52
7.1.3 Deep-memorized tranSition.............oooo i 54
7.2, TranSition @and STAE TYPB. ... i e ettt a e arb s 57
7.2.1 NO transition t0 CONCUITENT STALEccvvviiiiiiiiiiiiiii 57
7.2.2 No transition to concurrent brother stateccccccvviiii, 58
7.3, SYNCHroNiZed tranSItION.ttt e e e e e 59
7.3.1 SYNChronized NUMDET.........oouuii e 59
7.3.2 Wildcard tranSitioN............ooooiiiiiiiii 60
7.3.3 Synchronized state and synchronized tranSition..............coooeuiiiiiiieeiiieiiiiiee, 61
7.3.4 FOrced tranSitioNoovvviiiiiiiiiiiii 63
A R I =10 (o] 1 =T o To [T TSP 64
7.5, FOrmat Of tranSitioN.........ccvviiiiiiiiiiiiii 65
S T ol {1V 1 TSP PTTPTTR PSSP 67
S 0 I =T o] B T 1Y/ YU 67
8.1.1. Event-analyzer start aCtiVItyoiiieiiiiiiiiii e 69
8.1.2. Event-analyzer end aCliVityuuiiiiiiiiiiiii e 69
8.1.3. EVeNt-Nit StArt @CHVILYooiiiiiiiiiiiie et 70
8.1.4. Event-hit @nd @ClIVILYcoooiiiiiiiiii e 70
8.2, SHAE ACHIVITY vt 71
8.2. 1. State StArt CHVITY ...eeeereeiii ettt e e et 71
8.2.2. State MOAE ACHVITY ...cevvriii et 72
8.2.3. State €Nd ACHVILYceeiiiii e 72
8.3, DISPALCN ACHIVILY.....ceiiiiiiiiii et 73
S T I o o =T = Tox 1)V YU 74
8.5, STM MAIN ACHVILY ...ceiieeiiiii et e et e e e e e e abba e 75
8.6. Order of actions and ACHVILIES............ccevviiiiiiiiiiiii 75
8.7. FOrmMat Of CHVILY ...cceiiiiiiiei e et 77
9. BVENE ANAIYZEN ...t e e et e aaaaae 79
9.1, Variable EVENt @NAIYZETcooiiiiii e 79
9.2. Event analyzer and variable access method............coooiiiiiiiiiiiiiiii e, 80
9.2.1. Flag variable access Methodcooo i 80
9.2.2. Mail variable access Method............cccccccvviiiiiiiiii 80
9.2.3. Synchronized variable access method ..., 81
9.3, IN-MAII @NAIYZET ... 83
9.4, INEIrUPL @VENT @NAIYZELueii e 84
9.5. Function-call event analyzZero oo 85
10. State SChEAUIETcooiiieii 87
10.1. Parent-and-child schedule............ccccccooiii 88
10.2. CoNCUITENE SCNEAUIEuiiiiiiiiiii e 89
10.3. Tre@ SCREAUIE ... 91
10.4. State scheduler and tranNSItioNuueiiiiiiiiiii 92
10.5. State scheduler and ACHIVILYcooiiiiiiii e 92
10.6. State scheduler and INtErruPt EVENTi i 94
10.7. Format of state SChedUler...............oii 94
O B 1V =T o 0 1Y o 1= T TSP 95
11.1. EVENT-AINVEN TYPE ...t e ettt e e e e e e e 95
11.2. SEALE-ANVEN LY. ettt e e e e e ea b e eaaeeae 96
11.3. Driven type @nd EVENTcooiiiiiiii e 97

Table of contents

11.4. Driven type and STALEoooiiiiiiiii e 98
11.5. Driven type and @CHONcoooiiiiiiii e 98
11.6. Driven type and tranSitioN..............i i e 98
11.7. Driven type and aCHIVILYcoouuuiuii e 98
11.8. Driven type and eVent @NaIYZENooiiiiiiiiiii e 99
12, DEPAITMIENL. ...ttt ettt ettt e e e et e e et et et e et b e e e eaa e e e et aaenaaaaae 101
12.1. Department under NON RTOS 102
12.2. Department under RTOS ... 103
12.3. MAINITASK STM ...cciiiiiiiiiiiiiiii 104
12.4. LIDrary STM ...coooiiiiiii 105
12.5. DeVICe-AIVEN STM ..iiiiiiiiiiiiiiiiiiii 111
12.6. Interrupt-handler STM e 116
12.7. DEVICE-TEQISIE STMei it e e e e ee b 117
13, ClONE STM. e 121
T4, STMMAIN ..ot 123
14.1. STM main and event-driVeN tYPE.......ceuuuuiii e eeees 123
14.2. STM main and State-driVeN tYPE......ooeeiiiiiii e 124
T o 11T 7= o 0| TSP 125
15.1. EVENT NIEIAICRY ... e s 125
15.1.1. Call and return of event hierarchy ... 127
15.2. State NIBIAICNY......uie e e a e eeaes 130
15.2.1. Call and return of state hierarchy ... 133
15.3. HierarcChy and @VENT..........ooo i 137
15.4. HierarcChy and STate..........oooiiiiiii e 138
15.5. Hierarchy and @CtiONcooiiiiiiiii e 139
15.6. Hierarchy and tranSitioNuuiiii i 140
15.7. Hierarchy and aCtiVILYooouuuuuiii e 140
15.8. Hierarchy and event @analyzZer...........ooooiiiiiiii e 141
15.9. Hierarchy and state scheduler..............ooo e 141
15.10. Hierarchy and driVen tYPEcoooeiiiiuiiiiae e 141
15.11. Hierarchy and department...........couuuuiiiiiiiiiiii e 144
15.12. Hierarchy and Clone STM......ccooiiiiiiiii e 145
15.13. Format of hierarChyi oo 145
16. SUBIrOULINE STM...ccoiiiiiiiiiii 147
16.1. Call and return of SUDrOULINE STMuuiiiiiiiiiiiiiiiiiiiii e 147
16.2. Internal SUbrouting STMcooiiiiiiiii 148
16.3. External SUBrouting STM.......ccoviiiiiiiiiiii 148
16.4. Subroutine STM and MUIITASK.uuvuiiiiiiiiiiiiiii 148
17. EHSTM SYSIEM Call.....iiiieiee et e e e e et 149
17.1. M@ 150
17.2. ZKIll ZAIIVE ...t aaaeae 151
17.3. zSet/ zSeth / ZChECK........cooviiiii 152
17.4. 74 (=1 ST TP TP PP PPPPTTRTPPRPRTPPTN 153
17.5. LY=o | PP PP SUPPPPPPN 155
17.6. Zdi/ €1 1 ZAIl] ZEIl....uveiiiiiiiiiie e 156
17.8. p4 1= | o S TP PRTRRUPPN 156

Table of contents

®Introduction

1. Introduction
The original version of the Extended Hierarchy State Transition Matrix Design Method was

published in 1992. Five years have passed since that time.

Changes in "The Extended Hierarchy State Transition Matrix Design Method version 2.0" are as
follows:

(1) States can be concurrent.

(2) State hierarchy is allowed.

(3) Functions and interrupts can be described as events.

The range of applications that can be designed using the state transition matrix has been

extended, owing to these additions.

The trend is moving from structured analysis and design to object-oriented analysis and design.
The embedded system engineers would ask, "Can it be used for real-time controlled software in
the embedded, one-chip microprocessor?" as they did when structured analysis and design
were introduced. The answers from methodologists are always, "Yes, it can," but embedded
system engineers are skeptical about such an answer. Information processing engineers never
ask whether they can use it.

Why are their reactions different? Probably the focus of each party is a little different. The most
important information concerning the structured analysis and design method is "data flow," while
the "object" is the most important for object-oriented analysis and design. It is natural that these
methodologies, which come from the information processing field, focus on "data flow" and
"object,"” and that the information processing engineers have no doubt about it.

The focuses of embedded system engineers, however, are on "actual time" and "control.” To
our regret, even state transition does not capture "actual time." Maybe "actual time" is a kind of
information that can be captured only by activation (simulation) such as computer graphics.

In order for software to realize "control,” it is necessary to manage various states within the
software, switch actions depending on the state or received event, then change the state

further. "Event,” "state,” "action" and "transition" are important items of information. If a class is
designed without considering the importance of such information, the class will not have
"control,” and we wonder what happens to the software built using the class.

The basic concept of the state transition matrix design method is to design software with

consideration for "events," "states," "actions" and "transitions.” Therefore, embedded system
engineers do not become skeptical. However, the information about "object" should be added
to it.

It is not that the "state transition" information is added to "object.” “Object-oriented” in the

embedded world means to consider "when," "where" and "what" the class executes before
considering what the class exactly does (method and attribute). It is necessary to design

objects that handle control, not the objects that handle data.

®Introduction

The state transition diagram is used to design state transitions. Mealy, Moore, Harel and others
have rapidly improved the notational conventions. On the other hand, the state transition matrix
has been treated as a supplement to the state transition diagram, so very little has been
improved. | have no idea why the state transition diagram has been improved but the state
transition matrix has not.

I have challenged this issue because | was curious about the reason. | have always preferred
the matrix because it is more organized and easier to spot missing items. As for the diagram,
even though deletions could be handled somehow, we did not like the troublesome insertion
operations, which required moving other shapes and connecting the transition destinations.
Another reason | prefer the state transition matrix is that if it is used for designing, it is not
necessary to create a separate checklist for testing. This document is a result of our efforts to
realize what the most up-to-date state transition diagrams can represent by using the state
transition matrix. | have been designing control systems using the state transition matrix for a
long time. The software created thus far is still used actively. The method of design, using the
state transfer matrix, did not change even once from the age of assembly language well into the
age of C. | believe the importance of the state transition matrix will further expand in the future.

®Format of the state transition matrix (STM)

2. Format of the state transition matrix (STM)
The state transition matrix (STM) consists of the following four categories of information:

(1) Event

(2) State

(3) Action

(4) Transition

Events (or states) are written in the rows and states (or events) are written in the columns.
Actions and transition destinations are written in the cells where the rows and columns cross.

The STM can clearly and precisely describe when (event), where (state), and what (action).

State A | State B | State C Event A |EventB |EventC
i 1 z m 1 =
C'il'ransilion Action
estination
EVent A l:l : State A D Transition
Action destination
Transition = Action
destination 1 .
EVent B 1 State B Transition
Action destination
destnaton o o
Event C |2 . Action State C 2 Transition
- destination

Figure 2- 1 Format of the state transition matrix

A simple example is described using the STM. This STM shows someone's actions when
making a phone call.

In this example, events are described in the rows, states in columns, transition destinations in
the upper half of the cells and actions in the lower half of the cells.

Disconnected j On the phone
¥]
Message for making 0 .1
a phone call Dial
Voice from th 0
ot?:gf oy 1 State the message
party Hang up
Busy tone 5 - W
ang up

Figure 2- 2 STM describing actions when making a phone call

When the "message for making a phone call" event occurs while in the "disconnected" state, the
"dial" action occurs and the state transfers to "busy."” The active state is "busy" at this stage,

"state the message" and "hang up" are activated when the "voice from the other party" event

®Format of the state transition matrix (STM)

occurs, and the transition is made to the "disconnected"” state. At this stage, the active state is

"disconnected."
The STM in this document uses a format in which events are written in rows, states in columns,

actions at the bottom and transitions at the top of the cells.

®Format of the extended hierarchy state transition matrix

3. Format of the extended hierarchy state transition matrix (EHSTM)
Table 3-1 shows the Extended Hierarchy State Transition Matrix (EHSTM). Details are

explained in the following chapters.

42 42 4140 39383 37 3635 34 a3 32 31 30 29 28 LTI i 25 24 23
[p iy /v il N 1/ VAR, [/
T 0 =tateBC / sta'teDEJ
Famp Sfactual state fram fistate 'FrJ me
stated S T
fexc lusive ! Ik
tatek/ =tateb =tadtel \ stateD | stateE
3 W 100 frexclusive |PHexd lusive 'Y co—currentlco—current
statet/ shatek’ || Ffstate i Aistate
\ il
1 1
& —HIETEEIEETET I 1" o JAE 4 ' g
2 __Jeventib J— 0 o1
Fevent 0
frame*/ eventB 1 0. 2[1] 1 .
___ stats[E | | stateR
g ffactual event frame |2 O1.1:2 —ll—i-ti-tﬂ'-&'s—
- statel statel EN 15241, 133 |
5_.-"'#-”# iVarh == 1 3 |:|1.3[p=r=m=1:erj l '|
iWard==1 =ls=
"""""" P Flivara == |01
n i Funca) ;
arf == o 4 Ot.z0]:dlpara) TarE | et funsa (1 els.;u{ncb[j:
Funee [;
funza) | funsk [
loe ha AM100 \ \
& ik 11
. DEF 4 | Plibal e 2 O s
Sodriver call ®
event av—omd DEF_E 7 * drem () *) 16 17 15
DEF_C 5
7 |_ irmail o \ 15
' i 0
81 Imterrupt Al 14
— Sequence1
9 E& iWard 4 100 13
IVarE
10 1 2 Hefau 4
void funcX{pl,p2) 1 1 S

=
Sequenced
Sequenced
=32
T |
11 12

Figure 3- 1 Format of the extended hierarchy state transition matrix

®Format of the extended hierarchy state transition matrix

: STM definition

: Trigger activity

: Event virtual frame

: Event actual frame

: If condition

: Switch condition

: In-mail

> Interrupt event

: Event-hit start activity

10: Event-hit end activity

11: Function-call event

12: Nassi-Shneiderman chart
13: Driver STM call

14: Library STM call

15: Subroutine STM call

16: Event-hierarchy STM call
17: Invalid

18: Divided action cell

19: No use

20: Name transition

21: Local transition

22: Global transition

23: Concurrent state

24: Synchronized state

25: State virtual frame

26: Event-analyzer end activity: State-driven type only
27: Event-analyzer start activity: State-driven type only
28: State actual frame

29: State mode activity

30: State end activity

31: State start activity

32: Default state

33: Don't care

34: State hierarchy STM call

OCoO~NOOOUOITA WNPEF

35: Dispatch activity

36: STM main end activity

37: STM main start activity

38: Flag analyzer end activity
39: Flag analyzer start activity
40: In-mail analyzer end activity
41: In-mail analyzer start activity
42: Event-analyzer end activity
43: Event-analyzer start activity

Notes: Notations in Japanese and English

Number |Japanese| English Meaning
Number] ZEH_ |Event hierarchy STM
Number H ZSH_ |[State hierarchy STM
Number A ZES_ |[Event-driven subroutine STM
Number A ZSS_ |[State-driven subroutine STM
Number O ZEL |Event-driven library STM
Number ® ZSL _ |[State-driven library STM
Number © ZTR_ [Trigger event

®Format of the extended hierarchy state transition matrix

GOEvent

4. Event
An event is an external stimulus. The state transition matrix design is used to determine to

respond to the stimuli. The first step in the state transition design would be to list events. In the
example phone call in Chapter 2, there are three events: "message for making a phone call,”
"voice from the other party” and "busy tone." The events handled in the analysis stage tend to
be very abstract. The events handled in the design stage, however, need to be conscious of the
implementation, even though they are abstract. For this reason, events in the design stage
have to be clearly defined. A clearly defined event has a specific type. The event types are
explained below.

4.1 Event type
In the extended hierarchy state transition matrix design method (hereinafter referred to as the

EHSTM design method), four types of events are defined:
(1) Variable memory

(2) Interrupt

(3) In-mail

(4) Function call

4.1.1 Variable memory event
The variable memory event considers the change of a variable value as an event. The most

general event a program handles is the change in variable value. When a variable value
changes from 0 to 1, the program recognizes the occurrence of an event.
Variable A

Variable B 0 FF

Figure 4- 1 VariaJIe memoly event

[J: Refer to 4.2, "How to access variables," 9.1, "Variable event analyzer," and 9.2, "Event

analyzer and variable access method" for more information on variable memory events.

@OEvent

4.1.2 Interrupt event
The interrupt event is used by the CPU to directly notify the program of an external stimulus.

When the Real-Time Operating System (RTOS) is used, an interrupt handler provided by the
RTOS is called. When the RTOS is not used, the user creates an interrupt routine that stores or
“pushes” information from the interrupted program and retrieves or “pops” the information when
the interrupt processing is complete before going back to the program. Interrupts can be
prevented when a DI (disable interrupt) command is explicitly issued in the program. The
interrupt prevention is released by the El (enable interrupt) command.

Figure 4- 2 Interrupt event

An interrupt can occur even during the STM operation. Therefore, note that the following two

behaviors may occur when an interrupt event is used:

(1) If the STM does not have the reentrant structure, the state transition via the interrupt event
may take priority.

(2) If the STM has the reentrant structure, the state transition via the interrupt event may be
ignored.

State A State B State C

1 2 3
2 1

=P Event A 1
Action A

4 3 1

Interrupt event X 2

V|

Action C Action B

Figure 4- 3 Interrupt event

Assume action A was being executed because event A occurred in state A. When the interrupt

event X occurs in this instance, the PC (program counter) of the interrupted action A is pushed

10

GOEvent

in the TCB (task-control block) if the RTOS is used. If the RTOS is not used, the PC is pushed
in the supervisor stack. Then, event analysis is performed during interrupt processing, and
action C, where the interrupt event and state A cross, is executed as event number 2. Once
action C is complete, a transition is made to state C, whose state number is 3. At this time, the
control returns to the interrupted program. If the RTOS is used, it may return after other tasks
have been operated. When the execution of the rest of action A is complete, an attempt is
made to retrieve the state-transition destination. At this time, if the STM does not have a
reentrant structure, the state-transition destination will be state A, which has the state
number 1 because the current state is state C, which has state number 3, due to the state
transition by the interrupt event X. If the STM has a reentrant structure, a state transition is
made to state B having state number 2, because the state number returns to the one at the time
of the interrupt. In this case, the result is equivalent in that no state transition has occurred
via the interrupt event X.

Interrupts can explicitly be prohibited or enabled via the state transition matrix by writing zdi() or
zei() to prohibit or enable the interrupt, respectively, in actions or activities. zdi() and zei() are
the system calls of the EHSTM design method.

[L): Refer to 4.4.6, "Interrupt event," 9.4, "Interrupt event analyzer," 12.6, "Interrupt handler

STM" and 17.6, "zdi/zei/zdil/zeil,” for more about interrupt events.

11

@OEvent

4.1.3 In-mail event
In-mail events are the events that can be exchanged between STM hierarchies within the same

STM tree. In other words, the in-mail function exchanges messages between STMs in the
same way as the RTOS’s message communication function between tasks. The in-malil
function can be used regardless of whether the RTOS is implemented or not. The in-mail is for
notify other STMs of internal events occurring in the action cell. A usage example is as follows:
When an error is detected during the processing of an action cell, an in-mail indicating an
abnormality is transmitted to the STM controlling another equipment in order to perform error

recovery.

1.2

Figure 4- 4 In-mail event

LJ: Refer to 4.4.5, "In-mail event," 9.3, "In-mail analyzer," and 17.1, "In-mail," for the in-mail

events.

12

GOEvent

4.1.4 Function-call event
A function-call event considers a function call as an event. Therefore, the STM that can handle

function-call events has to be in the library section.

/* JPEG decompress library initialization */
jpeg_Compresslinit(&(dinfo));

/* get buffer processing */
getBuff(&(jpegBuff[0]));
/* JPEG decompress start */

for(;;{

err=jpeg_Compress(&(dinfo));

if(lerr == JPEG_CONT){ —

/* update buffer processing */ void
getBuff(&&jpegBuff[0])); 'T jpeg_Compressinit
continue; (JPEGINFO* cInfo)

else if(err == JPEG_OK){ | long

/* normal completion */ > jpeg_Compress
break; (JPEGINFO* cInfo)

}

else{ —

/* abnormal completion */

break;

Figure 4- 5 Function-call event

An STM that has been called as a function returns to the caller when the zret() system call is
issued.

(L) Refer to 9.5, "Function-call event analyzer" and 12.4, "Library STM" for the function-call

events.

13

@OEvent

4.2. How to access variables
There are two access methods for variables:

(1) Message type
(2) Flag type

Event [—Variable — Message type — Mail type
Synchronization type
Flag type
| Interrupt

L — In-mail

~ Function call

Figure 4- 6 Event types

The access method is closely related to the timing when the event is detected (retrieved).

4.2.1 Message event
Message events can be divided into communication-type events and synchronization-type

events. The RTOS is necessary in order to handle the message-type events. Mail-type events
and synchronization-type events do not simply access the variables in the program, but they do
so by executing mail communication and synchronization using the RTOS system calls. The

program is called a task or process because it operates under the control of RTOS.

—_— = —

When mail (message) is
delivered, check what the
content (variable) is.

Dy

et o
ﬁ ﬁ

When a notice (event flag)
comes in, check what the
content (variable) is.

Figure 4- 7 Message event

14

GOEvent

4.2.2 Flag event
With flag events, the program simply accesses variables. It does not matter whether the RTOS

exists when handling flag events.

Always monitors if
something has occurred.

y

Figure 4- 8 Flag event

A flag event is represented by an "if" or "switch" condition in terms of its format.

The condition of the highest level in the event cell is considered a flag event. Events with
condition symbols following a message event are considered regular condition statements and
are not subject to monitoring by polling as flag events are.

Condition
i
Y/
Condition |2
Message type
Condition |1
7
Flag type 2
/
Flag type 3

Figure 4- 9 Flag events and conditions

[L): Refer to 9.1, "Variable event analyzer" and 9.2, "Event analyzer and variable access

method," for information on accessing variables.

15

@OEvent

4.3. Mixed events
Events of different types can coexist in a single STM. However, function-call events must

belong to the library or device-driver section.

State
i
Meooage ype 0
/ Flag type 1
In-mail type o

Interrupt type 5

Function call
[4

Figure 4- 10 Mixed events

In the above example, five event analyzers are generated in one STM. They are the message
analyzer for the message event, flag-sensing analyzer for the flag event, in-mail analyzer for the
in-mail event, interrupt handler for the interrupt event, and the function for the function-call
event.

The default operations of mixed events are:

@ message analyzer

@ flag analyzer

@ in-mail analyzer

Further, the interrupt handler is executed when the interrupt occurs, and the function-call event
occurs with the function call. "Event analyzer” is a generic term for the above three.

When communication-type and synchronization-type message events coexist, a problem occurs
in the task execution control, such as when use of the synchronization type is disabled the

communication type enters the wait state, and vice versa.

16

GOEvent

When the highest-level event is a flag type or in-mail type, the event symbols for its children can

be omitted.
¥

E
F 1

C
G 3
—) 2

I
L o

H

M 6

o
| N /

Figure 4- 11 Nested events

In Figure 4-11, events "B" through "G" are not considered message events but flag events,
which are the same event type as parent event "A." In other words, a message event cannot be
placed after a flag event. Similarly, events "I" through "N" are not considered message events

but in-mail events, which are the same event type as parent event "H." In other words, the

i
/ 0 0
E E 1
H/ - 5
C G 7
— .]
I] -
H y 5
_d A !

parent of a message event has to be a message event.

Figure 4- 12 Flag events and conditions

17

@OEvent

In Figure 4-12, event "A" is a message event. Events "B" and "C" are not flag events but
condition statements. Events "D" through "G" are message events, which are the same event

type as parent event "A."

— 0
A
o -

Figure 4- 13 In-mail events and conditions
In Figure 4-13, event "A" is an in-mail event. Events "B" and "C" are not flag event but condition
statements. Events "D" through "G" are in-mail events, which are the same event type as
parent event "A." They are not interpreted as message events.

When the head is a message event, in-mail events cannot be placed thereafter.

[L): Refer to 9, "Event analyzer," for details on the event analyzer.

18

4

The following information can be described in the event cells:

1
2
3
4
5:
6
7
8
9

4. Format of event cell

: Event

: Event frame

: Message event

: Flag event

In-mail event

> Interrupt event

: Function-call event
: Trigger event

: “else” event

10: Event virtual frame

1

1: Event actual frame

12: “if” condition

13: “switch” condition

14: Event-analyzer start activity

15: Event-analyzer end activity

16: Event-hit start activity

17: Event-hit end activity

18: Default/else (no action default/else)

19: Analysis sequence number

4

4.1 Event

GOEvent

"Event" is a generic team for message events, flag events, in-mail events, interrupt events and

function-call events. An event is converted to an event number by the event analyzer. An event

normally has an event number, but sometimes it refers to an event and event frame collectively.

(L) Refer to 9, "Event analyzer," for details on the event analyzer.

4

4.2 Event frame

An event frame is a bundle of events or event frames. The event frame allows the creation of a

tree structure of events or conditional branches. There are two kinds of event frames: event

virtual frames and event actual frames.

19

@OEvent

4.4.3 Message event
There are two kinds of message events -- mail events and synchronization events -- but they

use the same notations.

4.4.4 Flag event
A triangle is attached to the top-left corner of a flag event.

4.45 In-mail event
In-mail performs communication between STMs within the same tree. The reception of an in-

mail is represented by a double square. The issuance of in-mail is represented by “in-mail
(STM level number of the notification destination, in-mail name)” in ZIPC.

100
0]
;
In-mail A |0 In-mail (100, in-mail B)
Q
, 1
In-mail B In-mail (100, in-mail A)
EventA J°
EventB |?
4

Figure 4- 14 Sample in-mail STM (1)

There is a possibility that an in-mail can form an infinite loop. In the above STM, the
transmission and reception of in-mail are repeated infinitely when in-mail A occurs during state
number 0. The "if* and "switch" conditions can be stated after in-mail. An event-hit activity can
be defined for an in-mail. No events can be stated following an in-mail.

20

GOEvent

In- ma|I B

'6ariab|e A==1|1

In-mail A In-mail C

2|l =e 2
[In-mailD &
Event A 4
Event B &
5
ipif (in-mail_A) {)
if (in-mail_B) {
/I event number O
}
else if (in-mail_C) { ¢

if (variable A = 1) {
/I event number 1

}
else {
// event number 2
}
}
else if (in-mail_D) {
/I event number 3
}
Figure 4- 15 Sample in-mail STM (2)
{ 1
EventA |0
In-mail CVeTT S
1
Z
| -

The in-mail analyzer and event analyzer are separate functions.
Figure 4- 16 Sample of unallowed in-mail STM

(L) Refer to 9, "Event analyzer," for the in-mail and event analyzers.

21

@OEvent

4.4.6 Interrupt event
The interrupt event analyzes events within the interrupt handler and manipulates the STM. The

"if" and "switch" conditions can be stated after the interrupt. An event detection activity can be
defined for an interrupt event. No events can be stated after an interrupt event.

(=30 3] [
- V DEF_ a0
Interrupt A VarlAabIe DEF_E 1
DEF__ |2
Interrupt B 3
SIE] 4
Interrupt C 4

1

> interrupt void interrupt_A (void) {

switch (variable_A) {

case DEF_A:
/I event number 0O
break;

case DEF_B:
/l event number 1
break;

case DEF_C:
/l event number 2
break;

}

interrupt void interrupt_B (void) {
/I event number 3
}

interrupt void interrupt_C (void) {
/I event-hit start activity
/I event number 4
/I event-hit end activity

>

—»

Figure 4- 17 Sample interrupt event STM

22

GOEvent

4.4.7 Function-call event
A function-call event is indicated by "[" on the left.

4.4.8 Trigger event
Only one trigger event can be defined in an STM department (STM tree). However, it cannot be

used in the subroutine, library or driver section. In other words, one trigger event can be
defined in a task or module. A trigger event is executed only once at the beginning of a task or
module execution. In order not to increase the number of cells, trigger events are not
written in the event column but as trigger activities in EHSTM version 2 or later. In
EHSTM version 2, "®" and " ® " are not treated as keywords for trigger events. If a
trigger event needs to be specified anyway, use “ .” The trigger event is executed only in
the left-most action cell (state number 0), even if it is a concurrent state. In a trigger event, the
specification of the default state position with the default symbol () is ignored, and the state

with the youngest number is selected instead.

i Trigger event |0 ; 1
Event A 1
Event B 2
Event C &
2l =se 4

Figure 4- 18 Trigger event

23

@OEvent

449 “else” event
One "else” event can be defined in each frame. This is the event not classified into any event.

Figure 4-19 represents the else event in a format similar to the C programming language.

[i
Event A]
Event B 1
Event C =
el =e &

if (event_A) {
/I event number O

else if (event_B) {
/I event number 1

else if (event_C) {
/I event number 2

}
P else {
}

/I event number 3

Figure 4- 19 “else” event

In

2| = 1

B | ==

[O |
I
o | O | =[G] ra

el =
W
I
e 7
‘ 2| ==
E te
el = e =

The else event can be placed in each frame as shown in Figure 4-20.

Figure 4- 20 “else” event in each frame

24

GOEvent

4.4.10 Event virtual frame
The event virtual frame is used for analyzing events, and can execute event-hit activities. An

event virtual frame can be a comment frame that will not be executed, by enclosing the entire
frame with comment symbols. In this case, the activity does not run, either. Event virtual
frames do not have event numbers.

Take a look at Figure 4-14. Frame A is the parent frame of frames "B" and "C," and possesses
an event-hit start activity. Frame B is the parent frame of events "A" and "B," and possesses an
event-hit end activity. Frame D is a comment. A comment is an abstract event that does not

have to be analyzed by the event analyzer.

il
) £ Event A 0
Frame B Event B .
Frame A Event C o
Frame C
Event D]
Event E 4
/*frame D */ | Frame E Event F 5
Event G]
Frame F
Event H b
=
— if (frame_A) {
P/l event-hit start activity
L pif(frame_B){

if (event_A) { <
/I event number O

}
else if (event_B) {
/I event number 1

/I event-hit end activity
else if (frame_C) {
if (event_C) {

/I event number 2

else if (event_D) {
/I event number 3
}

}

else if (frame_E) { // frame D
if (event_E) {
/I event number 4
else if (event_F) {
/I event number 5
}

else if (frame_F) {

25

@OEvent

if (event_G) {
/I event number 5

else if (event_H) {
/I event number 6
}

Figure 4- 21 Event virtual frame sample STM

4411 Event actual frame
The event actual frame can be described as an event virtual frame that has an event number

and drives the STM.

Actual frame A 1]
Event A 1
Event B

Event C

Event D

Event E
Actual frame B
Event F
Event G
Event H
Event |

Frame C

WL Jd]| =[]

=r
=

if (actualframe_A) {
/I event number O
if (event_A) {
/I event number 1

else if (event_B) {
/I event number 2

else if (actualframe_B) {
if (event_C) {
/I event number 3

else if (event_D) {
/I event number 4

else if (frame_E) {
/I event number 5

/I event number 6
else if (frame_C) {
if (event_F {

/I event number 7

else if (event_G) {
/I event number 8
}

26

GOEvent

else if (event_H) {
/I event number 9
}

else if (event_I) {
/I event number 10
}

Figure 4- 22 Event actual frame sample STM

Event actual frames can also define activities the same way event virtual frames can.

4.4.12 "if" condition
The "if* condition classifies events based on a specific condition. In the traditional STM, "if"

conditions are written in condition cells. However, it is not practical to write a retry counter as a
state, for example, because it will lead to a huge increase in the number of states. Be careful,
since the use of too many "if" conditions will increase flags, which may ruin the STM design.
Remember, the essence of the STM design is to reduce flags as much as possible. The
purpose of the STM design will be lost if too many "if* conditions are used in the state transition

matrix.

Variable A==1 0

Variable B == 1

Event A
Variable C >0 |¢

else 6ariableC<203

if (event_A) {
if (variable_A = 1) {
/I event number 0O

}
else if (variable_B = 1) {
/I event number 1

else {
if (variable_C > 0) {
/l event number 2
else if (variable_C <= 0) {
/I event number 3
}
}

Figure 4- 23 "if" condition sample STM (1)

27

@OEvent

-
Variable A == 0
Variable | Variable B==1 |
A>0
Variable C > 0
=2 | s a
Variable C<= 0[*

Event 4

Figure 4- 24 "if" condition sample STM (2)

Conditions and events can be mixed, as shown in Figure 4-24. When the event at the highest
level is a flag or in-mail type, the child events are interpreted as the same type as that of the
parent event.

In Figure 4-25, the event is interpreted as a flag type instead of a message type.

Tl
Variable A ==]
. Variable B == 1
Variable
A>0) o
Variable C >0
Event
Variable C<=0 K
Event 4
=

Figure 4- 25 "if" condition sample STM (3)

A function call (differing from the function-call event) can be written in the "if* condition. For
example, a function (not a variable) can also be written as follows:

GetChar() = OK

This can also be written using a "switch" condition or flag-type event.

[L): Refer to 4.3, "Mixed events," for the interpretation when events and conditions are mixed.

28

GOEvent

4.4.13 "switch" condition
"Switch" conditions work in the same way as "if" conditions. The difference is the same as

between the "if* statement and "switch" statement in the C programming language. A "case"
statement follows immediately after the "switch" condition, and no events are allowed.

=
DEF__A 0
DEF_B 1
Event A |Variable DCEF_A
A DEF_E
Variable
DEF_C|;
defaul t B DEF_D
DEF_E|4
ODEF_F
bl
P it event A){
switch (variable_A) {

case DEF_A: «¢
/I event number O
break;

case DEF_B: «¢
/I event number O
break;

default:

switch (variable_B) {

case DEF_A:

case DEF_B:
/I event number 2
break;

case DEF_C:

case DEF_D:
/I event number 3
break;

case DEF_E:

case DEF_F:
/I event number 4

}

Figure 4- 26 "switch" condition sample STM

29

@OEvent

0
/ = 0
C F 1
- 2
Alg y 2
» | 4
N J °

Figure 4- 27 Coexistence of switch condition and message event

In Figure 4-27, "A" is interpreted as a message event, "B" as a switch statement, "C" and "D" as

case statements, and "E" to "J" as message events.

30

GOEvent

4.4.14 Event-analyzer start activity
The processing that is called immediately prior to starting the event analyzer is described.

Three types can be set in one state transition matrix: message-event analyzer, flag-event
analyzer and in-mail event analyzer. An"S" is attached to the state transition matrix to indicate
that an event-analyzer start activity exists. Refer to the interrupt-event sample STM for the
format.

LL): The activity will be explained in 8, "Activity."

4.4.15 Event-analyzer end activity
The processing that is called immediately prior to the end of the event analyzer is described.

Three types can be set in one state transition matrix: message-event analyzer, flag-event
analyzer and in-mail event analyzer. An "E" is attached to the state transition matrix to indicate
that an event-analyzer end activity exists. Refer to the interrupt event sample STM for the
format.

4.4.16 Event-hit start activity
This is the processing that is executed immediately after an applicable event is detected. It can

be set in four types of events: variable type, interrupt type, in-mail type and function-call type.
An "S" is attached when there is activity. Refer to the interrupt event sample STM for the

appropriate format.

4.4.17 Event-hit end activity
This process is executed when the action and transition processing are finished after an

applicable event is detected. It can be set in four types of events: variable type, interrupt type,
in-mail type and function-call type. An "E" is attached when there is activity. Refer to the
interrupt-event sample STM for the format.

31

@OEvent

4.4.18 No action default/else

il]
100 0
200 1
Variable
A a0 2
erri) |
Variable B == 3

Variable B == 100 |4

resetl)

switch (variable_A) {
case 100:
/I event O
break;
case 200:
/I event 1
break;
case 300:
/I event 2
break;

default:

err();

}
if (variable_B == 0) {
/I event 3

}
else if (variable_B == 100) {

/I event 4
}
else { <

reset ()
}

Figure 4- 28 No action default/else

When processing is required for the "default”" of a switch statement or "else" of an "if" statement,
regardless of the state, the increase in the number of cells can be suppressed by specifying no
action default/else.

32

4.4.19 Analysis sequence number

T

EventB |

Event A

Event C f 2

Figure 4- 29 Analysis sequence number

if (event_C) {
/I event number 2

else if (event_B) {
/I event number 1

else if {event_A}{
/I event number O
}

The order of the analysis can be set by specifying the analysis sequence number.

GOEvent

33

@OEvent

34

@ State

5. State
A state can be described as a shelf for storing events that have occurred in the past. In the

example of the telephone in Chapter 2, there were two states: "disconnected" and "busy.” A
state has two attributes: one is the exclusive attribute, and the other is the concurrent attribute.
The STM created only with the exclusive attribute is called the exclusive STM, and the others

are called concurrent STMs.

5.1. Exclusive state
If only one of the states of the design target is active at a time, it is in the exclusive state. The

telephone example in Chapter 2 is in the exclusive state. The exclusive state means that either

the "disconnected” or "busy" state can be active.

5.2. Concurrent state
When multiple states are active in the design target, it is in the concurrent state. In the

example of the concurrent state shown below, the action of watching TV is added to the

telephone example from Chapter 2.

LT p= o] =N A
e o Iy !
ON
DISCONNECTED
ON THE PHONE OFF
NORMAL|MUTE
¥ 1 2 2 4
Message for 1
making a phone | Dial Ve e Ve '
call
Voice from the il 4
other party 1 ™ State the message yd Mute yd
Hang up
0
Busy tone 5 w0 Hang up Y Y v
Interested E
program] o Ve Turn TV on e e
2 2
End of program 4 v v v Tum TV off Tom TV off

Figure 5- 1 Concurrent state STM

35

@O State

This is an STM for the action to make a phone call while watching TV. When making a phone

call while watching TV, the sound of the TV is muted when the other party answers. The

telephone and TV can operate concurrently.

A concurrent state is surrounded by dotted lines. The "telephone” and "TV" state frames have

concurrent attributes, and both of them could be active simultaneously. The "telephone” state

frame has two child state frames ("disconnected" and "busy"), both of which are exclusive

attributes. The "TV" state frame has one exclusive-attribute state ("OFF") and one exclusive-

attribute state frame ("ON"). In addition, the "ON" state frame has two exclusive-attribute states
("NORMAL" and "MUTE").

A concurrent state is a candidate for task splitting. Concurrent states mean operations are

executed concurrently. Therefore, concurrent actions can be achieved through multitasking by

considering each concurrent state as a task. In this case, the STM that represents one of these

tasks is in the exclusive state.

36

[System specifications]

A T | v |
DISCONNECTED ON THE PHONE ON
OFF
NORMAL|MUTE
[l 1 2 2 4
Message for 1
making a 0| Dial 7 Ve e e
phaone call
State theﬂﬂessage 4
Voice from the |1 x e Mute e
other party Hang up
0
Busy tone 2 b Hang up o o o
| d s
ntereste 3
program / / Turn TV on / /
End of . .
nd o
program 4 7 4 o Turn TV off Turn TV off
O N
a OFF
il NORMAL|MUTE
Message for 1
making a 0 Dial - L 1 <
phone call Voice from 0 y 2 P
\Voice from the] 0 the other party Mute
other party 1 State the message Interested 1
Hang up r[\):)r(;ersaﬁq [Tumn v on 4 /
- 0 End of 5 » 2 2
Busy tone Hang up program Turn TV off urn TV off

[Telephone task]

[TV task]
Figure 5- 2 Concurrent states and exclusive state tasks

@ State

5.3. Format of state cell

The following information can be described in the state cells:
: State

: State frame

: Exclusive state

: Concurrent state

: State virtual frame

: State actual frame

: State start activity

: State mode activity

: State end activity

10: Default state

11: State hierarchy STM call

12: Synchronized state

© 00 N O O A W N PP

5.3.1 State
State is a generic term for the exclusive state and concurrent state. In some cases, it includes

state frames.
5.3.2 State frame
A state frame is a bundle of states or state frames. A tree structure of states can be created via

the state frame. State frames have two types: state virtual frame and state actual frame.

5.3.3 Exclusive state
An exclusive state is represented by a square.

5.3.4 Concurrent state
A concurrent state is represented by a dotted square inside a solid square.

37

@ State

5.3.5 State virtual frame
A state frame is a parent state that bundles child states. A state frame itself may become a

child. Similarly to the states, state frames have attributes of either exclusive or concurrent.
O Rules in the parent-and-child relationship of state attributes
() Exclusive () Exclusive () Concurrent () Concurrent
| | | |
Exclusive Concurrent Exclusive Concurrent
O Rules in the brotherhood relationship of state attributes

(O) Exclusive - Exclusive () Concurrent - Concurrent (X) Exclusive - Concurrent

Exclusive attribute means only one of the brothers becomes active at a time. In other words, all

brothers have to be exclusive. Therefore, exclusive and concurrent states cannot be brothers.

=2 =3

531
=1 54
=21 =22 =32
5311|8312

Figure 5- 3 Exclusive state

The parent-and-child and brotherhood relationships of the above STM can be represented by

the following state tree.

S1-S2 S3-54
I I
S21- S22 S|33 -S32
S311- S312

Figure 5- 4 State tree

38

@ State

There are four errors in the following STM:

=51 =54

1
=21 | 522

iy
[[
[a

Figure 5- 5 Erroneous states

(1) S3is concurrent. S3 should be exclusive, or S1, S2 and S4 should be concurrent.
(2) S22 is concurrent. S22 should be exclusive or S21 concurrent.
(3) S32 is concurrent. S32 should be exclusive or S31 concurrent.

(4) S312 is concurrent. S312 should be exclusive or S311 concurrent.

5.3.6 State actual frame
The state actual frame is a state frame that can drive actions by events and make transitions.

State frames cannot drive actions by events. The state virtual frames (S2, S3 and S31)
described in 5.3.5 are unrelated to the execution of actions. Only the states (i.e., the ones

having state numbers) are related to actions.

= SE]

=3

5 1 S 31 5 4
=21 |s22 s30

S311|1531¢2

W 1 = 3 1 A E ¥ 5 o

[x=]
\ 4

> >

Figure 5- 6 State actual frame

S2, S3 and S31 are state actual frames. Since S21 and S22, which are the child states of S2,
are exclusive brother states, only one of them is executed. The rule that determines which one
is executed is explained in Chapter 7, "Transition." Since S31 and S32, which are the child
states of S3, are exclusive brother states, only one of them is executed. When S31 is executed,
one of the child states, S311 or S312, is executed.

39

@ State

5.3.7 State start activity
This process is executed when a transition is made to the applicable state (when the applicable

state becomes active). An "S" is attached to indicate that activity exists. See S3 in Figure 5-6
for the format.

5.3.8 State mode activity
This process is executed as long as the applicable state is active. An "M" is attached to indicate

that activity exists. See S3 in Figure 5-6 for the format.

5.3.9 State end activity
This process is executed when a transition occurs from the applicable state (when the

applicable state becomes inactive). An "E" is attached to indicate that activity exists. See S3 in

Figure 5-6 for the format.

5.3.10 Default state
The default state specifies which state of the brother states becomes active. When there is no

default mark (t), the state with the lowest state number becomes the default state. The default
state of the STM in Figure 5-6 is S1 (state number: 0). The state that becomes active first shall
be S1. When the transition to S2 occurs, of the child states of S2 (S21, S22), the S21 becomes

active by default.

52 53 v
V 531

S 1
S 4
52 saz
=22 s3i11lsate

Figure 5- 7 Default state

[: Several types can be specified for transitions. Depending on the type, the default may be

valid or invalid. Refer to 7, "Transition," for details.

40

@ State

5.3.11 State hierarchy STM call
The state hierarchy is described in the state cell as follows:

OSTM level number

USTM name
The state hierarchy STM can be called only from a state having a state number. Others cannot
call this. State frames and state actual frames cannot call it, either. The hierarchy states are
implemented via the state tree. The state tree shown in Figure 5-4 is described below using the

state hierarchy.

W =z | =3
=1 mq. 1m1. 2| =Y
[WAl AN 2
0
1.1 szt |se2 mi. 559
= - AR R

=
=]
L
_—

mi. 2.1 511|831 2

Figure 5- 8 State hierarchy STM

[: The details of hierarchy are explained in 15, "Hierarchy."

41

@ State

5.3.12 Synchronized state
The synchronized state is a concurrent state that performs transition synchronous to the

transition from a concurrent state. A synchronized state is represented by an exclusive parent

state frame surrounded by solid lines.

A B C
BL | B2 | B3 || B4

0 1 2 3 4 5

: A C 0 5 B
E1 |0

/ / / / / /

B 0 5 A C A
E2 |1

/ / / / / /

Figure 5- 9 Synchronized state

The exclusive state "B" is a synchronized state. The "B1" synchronized state makes a state
transition to "A" via event "E1." Normally, a transition occurs to the "A" state at this time.
However, since the synchronized state is specified as the parent's exclusive frame, "B1" waits
until all of the brother concurrent states "B2/B3/B4" make transitions to state "A" (state number:
0). What happens if "B2" accepts "E1" in this state? The action will be executed but the
transition to state "C" will be ignored, because "B1," which is a synchronized state, is already
waiting for the synchronization to state "A." State "B1" will keep waiting until the states "B2,"
"B3" and "B4" make transitions to state "A," resulting in a deadlock since "B2" and "B4" will have
no transitions to state "A." The deadlock can be released by specifying a forced transition. This
kind of deadlock should be statically detected by a CASE tool that supports the EHSTM.

The priority of the synchronized transition destination is determined on a first-come, first-serve
basis.

[: Synchronized transition and forced transitions are explained in 7.3, "Synchronized

transition."

42

6. Action

(MAction

An action is a function or process that is executed when the specific event occurs during the
specific state. The action cell is a cell in which the event cell and the state cell cross. While the
"what" (function) is normally described in the action, "how" (processing) can also be described.
A function is described as the action in the example phone call in Chapter 2. It is also allowed
to describe how to process the function of "making a phone call” in the action cell.

Disconnected

JJJJJJ

Message for
making a phone
call

//Dial

Lift handset

Push phone number of
the other party

Voice from the
other party

1

/

Figure 6- 1 Action that describes processing

6.1. Format of action cell

The following information can be described in the action cells:

1: Human language statement
Computer language statement
NS chart

Invalid

No use

Event hierarchy STM call
Subroutine STM call

Library STM call

Divided action cell

10 EHSTM system call

11: Transition symbol

12: Don't care

©°°\“7’U"4>°°'\’

43

@ Action

6.1.1. Human language statement

A function or process is described in human language in the action cell. The range of usable
Actionhuman language statements is not specified in this document, but depends on the
specifications of the CASE (Computer-Aided Software Engineering) tool that supports the
EHSTM design method.

6.1.2. Computer language statement

A function or process is described using computer language in the action cell. The range of
usable computer language statements is not specified in this document, but depends on the
specifications of the CASE tool that supports the EHSTM design method.

6.1.3. NS chart

The NS chart can be described in the action cell. The NS chart is a documentation technique
for the structured approach. In the NS chart, three basic logical structures (sequence, if then
else, do while) are represented by the following symbols. The range of usable NS charts is not
defined in this document. It depends on the specifications of the CASE tool that supports the
EHSTM design method.

A p p
B THEN ELSE
A B A
(1) Sequence (2) if-then-else (3) do-while

Figure 6- 2 Basic symbols of NS chart (A and B: functions; p: test condition)

6.1.4. Invalid

“Invalid” is represented by an “X" mark. The invalid indicates an event and state combination
that can never occur. Therefore, a debugging process such as halting the system needs to be
implemented in case the invalid action cell is called. In the example of a phone call in Figure 2,
the "voice from the other party" and "busy tone" events never occur in the "disconnected" state.
Therefore, invalid (X) is written in the action cell.

1 Kunitomo, Yoshihisa, "Introduction to the structured programming,” Ohm-sha press

44

(MAction

6.1.5. No use

No use is indicated by the "/* symbol. No use means the event and state combination can exist
but no processing is executed. In the example phone call in Figure 2-2 in Chapter 2, even if a
"Message for making a phone call" occurs under the "Busy" state, it is ignored (/).

6.1.6. Event hierarchy STM call
The event hierarchy STM call is described as follows.
[1 STM level number <option>
[1 STM name <option>
Unlike the state hierarchy STM call, the event hierarchy STM call can call multiple child event
hierarchy STMs. The STM of a phone call in Figure 2-2 is shown as an event hierarchy.

11 Disconnected On the phone
i]
Message for 1
making a phone:|J]. Dial .
call
Busy tone .
1 1. 1

v

On the phone
11, 1
i
Voice from the State the message

other party 0 ‘Hang up

Busy tone Hang up

Figure 6- 3 Event-hierarchy STM call

The event hierarchy constructs a tree of events. The event tree of Figure 6-3 is shown as
follows, and can be represented not only by hierarchy but also by an event frame.

Sound heard from the phone - Voice from the other party
Busy tone

Figure 6- 4 Event tree

Three items can be specified for the option: argument, clone number and event number.

45

@ Action

(1)Argument
By specifying arguments, information can be exchanged between the calling STM and the
called STM.
O Tel(¶l, para2)
The description is the same as that of the arguments in the C programming language. When
the argument type is necessary, declare it in the STM on the called side.
O Tel(int *ip1, int i2)
(2)Clone number
The clone STM is treated as an array in C. The clone number is an array index. Specify an
index, assuming the STM as an array.
01.1[2]
The array index starts from 0. The array size for the STM is declared on the called side.
01.103]
(3)Event number
By specifying the event number, a call can be made so that the specified event number is driven
without going through the event analyzer of the called STM. This is called the direct event
number call. Insert a colon (:) after the name or level number of the STM to be called, then
specify the event number after that.
O tel:0
No declaration is necessary on the called side.
The event number starts with O or 1.
(Use of STMs starting with O and those starting with 1 mixed in the same project may easily lead
to confusion.)

The composite format for options is described in the order of (1) clone number, (2) event
number and (3) argument.
0 1.1]0]:0(p1,p2,p3)

[L): The hierarchy is detailed in 15, "Hierarchy." The details of the clone are explained in 13,
"Clone STM." The details of the event analyzer are explained in 9, "Event analyzer."

46

(MAction

6.1.7. Subroutine STM call

Subroutine STM calls are written as the following:
DSubroutine STM level number <option>
DSubroutine STM name <option>

D100[0]:0(p1,p2,p3)

For the specifications of options, refer to Section 6.1.6, "Event hierarchy STM call," since they
are the same.

(L) The details of the subroutine STM will be explained in 16, "Subroutine STM."

6.1.8. Library STM call
The library STM calls are written as the following:
1 library STM level number (function name <option>)
] library STM name (function name <option>)
(*)The event number cannot be specified via a library call.
A function name is written instead of the event number.
UPEGI0]:jpeg_Compress(pl,p2,p3)

The STM level number and name can be omitted only when the call is made with the argument
options only.

jpeg_Compress(pl,p2,p3)

[L): The details of the library STM are explained in 12.4, "Library STM."

a7

@ Action

6.1.9. Divided action cell
The divided action cell is an action cell split into multiple cells, according to the condition.

=tated

h==1|B== else
Eventh [OF___] - I
FuncAlFuncE
> if(A==1)(
FuncA
}
L » else if(B==1){
FuncB
}
else if(A==1 && B==1){ ¢——
FuncC
}
else{

Figure 6- 5 Divided action cell
The rule for determining the condition of the divided action cell is the "if-else” method. In the

example above, FuncC will never be executed. To change to the "if-if* method, describe it using
the NS chart or directly write the C code.

48

(MAction

6.1.10. EHSTM system call

The EHSTM system calls are not represented by symbols but by writing specific actions by
words (sentences) such as “system call.”

The EHSTM system calls will be explained again in 16, "EHSTM system call.” Refer to that
section for details.

6.1.11. Transition symbol
By using the transition symbol (=>), the transition destination can be specified without writing in
the transition cell. When the transition symbol is found, actions written after the transition
symbol are executed after the activity (end and start) is operated.

=> transition destination
A local or global transition can be specified as the transition destination.

Figure 6- 6 Transition Symbol

statel state?
[1
o | ‘hh““hmnmaéfl?gﬂﬂﬂﬁfﬂfﬁﬁp
ifliflag == QK1
f gg{iﬂ 0 0K else
alze | frunch funcE
. funcB O Erstatel = rstatel
t1 ="
sren | 2, FLncC
funcCO ; count
icount+;;
[whilelicount<10) i count<10

In the STM in Figure 6-6, every funcC is executed after the transition is activated. If you wish
not to execute the rest of the process after the transition is performed, it is necessary to write a
return statement in the action cell of the STM.

[L): The details of the transition are explained in 7, "Transition."

6.1.12. Don't care

Don't care is represented by a dot (.). The meaning is the same as no use (/).

49

@ Transition

7. Transition

“Transition” means a transfer from one state to another state. In the example of a phone call in
Figure 2-2, the transition from the "disconnected” state to the "busy" state occurs via the
"message for making a phone call" event after executing the "dial" action.

7.1. Transition types

In the EHSTM design method, the transitions are defined in three types.l
1) Fixed

(2) Memorized

3 Deep-Memorized

The transition type specifies which child state to activate when its parent state is specified as
the transition destination. If a childless state is specified as the transition destination, there is
no difference in the action when any type is specified. A state name or state number is
specified as the transition destination. The specified name has to be a unique name.

When the transition type is omitted, the deep memorized is used.

7.1.1 Fixed transition

The fixed transition is written in the following format:
Transition destination state name (D)
Transition destination state number (D)

(S|
OFF
MORMAL MUTE
[1 2]
Voice MUTE
from the . 0
other £ Mute s
party
Interested
rogram
prog 1 - Turn TV 4 d
on
End of OFF OFF
program |2 H
Turn TV off | Turn TV off

Figure 7- 1 Fixed transition (1)

In the "OFF" state upon "Interested program” event, transition to the "ON(D)" state will occur
after the "Turn TV on" action. This means that the default state of "NORMAL" or "MUTE" will be
selected after the transition to the "ON" state occurs. In other words, since there is no default
mark (t), in this situation "NORMAL" will become the active state via the priority given to the
smaller number.

! Rapid Simulation & Training

51

@ Transition

If there is a default mark on "MUTE," the active state will be "MUTE" after transition to the "ON"

state.

21 [
OFF
RORMAL MUTE
[1 o
; VOiCﬁ MUTE
rom the
other . ! Mute !
party
Interested
program |1 Turn TV on 4 g
End of . } OFF OFF
program Turn TV off Turn TV off

Figure 7- 2 Fixed transition (2)

7.1.2 Memorized transition
The memorized transition is written in the following format:

Transition destination status name (H)
Transition destination status number (H)

R
OFF
B RMAL MUTE
0 1 2

Voice
frogl] the MUTE

other £ i

party Mute
Interested
program N (Turn TV on £ £

End of OFF OFF
program |2 ¥

Turn TV off | Turn TV off

Figure 7- 3 Memorized transition (1)

The default state is ignored by the memorized transition. The child state, which was active in
the past, will be activated. The default is used only when no state has been active.

52

@ Transition

:
NORMAL

1)

Voice from the
(2 other party

3)
End of
Eprogram >
4 { OFF J

(5) Interested (6) Interested
program program

ON ON
MUTE NORMAL

Figure 7- 4 Memorized transition SDL

(Functional Specification and Description Language)

(1) The "NORMAL" state is activated by default at the beginning.

(2) When the "Voice from the other party" event occurs, the "MUTE" state is activated.

(3) At this stage, the "ON" parent state will change the history of the child state to "MUTE."

(4) Again, the "Interested program" event occurs.

(5) Because the transition destination type is the memorized type (H), a transition occurs to
"MUTE," which is the recorded history.

(6) When the "Voice from the other party" event does not occur, the “ON” parent state keeps the
child state history at "NORMAL," so the transition is made to "NORMAL."

This requires only a change of the transition type to the memorized type, so there is no need for

the transition requester side to be conscious about what was active last time. Also, if transition

by default is desired, all you need to do is change the transition type to the fixed type.

53

@ Transition

7.1.3 Deep-memorized transition
The deep-memorized transition is written in the following format:
Transition destination state name (P)
Transition destination state number (P)
The deep-memorized transition is applied when the transition type is not explicitly specified.
(*) Note that deep-memorized transition is applied, not fixed transition, when the transition type
is omitted.

[y
TAFE
OFF
MO_TAPE >
] (98 Ad |
e | A ||
] 1 2 3 dq Ja]] 7 g 9
0N [0N (HD £ £ £ i/ i s £ i £
0FF 1 s =HIFF |[=HIFF |=AFF |=3FF |=30FF |=XFF FMFF [=X0FF EFF
IN TAPE |2| # ETAPEIFD | £ i/ i s £ £ £
OUT TAPE |3 ~ £ =: | =¥ | =M | =M | =E =M | =M | =H
[- £ & =3 | = | =m | =me = | =x |=m
»] £ =33 Fol=r | = | =m | =M | =35 £
> 1 ¢ =37 | =m4 i/ = s Fol=r | oF
44 TF £ = | =35 | =35 £ S| = I £
1] gl s £ £ =y | =3 | =26 | =33 £ £ £
e P - £ =34 £ I I s P iy P

Figure 7- 5 STM for a videocassette recorder (1)

Through deep-memorized transition, the parent state activates (makes a transition to) the
descendant states based on the history of all descendant states. In the memorized transition,
the parent state executes a transition based on the history of its own child only, while the fixed
transition is applied to the grandchildren and their descendants.

The STM for a videocassette recorder in Figure 7-5 is explained below as an example.

1 Initially "OFF" as the default state.

2 "ON" occurs.

3 Memorized transition (H) occurs to the "ON" state.

4 Since there is no history yet (none has been activated), transition is made to "NO_TAPE,"
which is the default state.

"IN TAPE" occurs.

Deep-memorized transition (H) occurs to the "TAPE" state.

Since there is no history yet, transition is made to the "l" (STOP) state, which is the
default.

~N o O

54

@ Transition

8 " P "(PLAY) occurs.

9 Transition to state number 3.

10 "pP" (FAST FORWARD) occurs.

11 Transition to state number 4.

12 "OUT TAPE" occurs.

13 Transition to state number 1.

14 "IN TAPE" occurs.

15 Deep-memorized transition (P) occurs toward the "TAPE" state.

16 The history of states whose parents are "TAPE" will look like the following diagram at this
time. The states indicated by ® are the ones that were active previously.

TAPE
M
>
- >
> ®©
<4<

IS

— S

— <«

L e

Figure 7- 6 State tree
17 " PP " of state number 4 becomes active.

To avoid the continuation of the previous operation when the tape is inserted, change
=>TAPE(P)

to
=>TAPE(D)

and it will always start from the default "Ill" (STOP) state.

In the current design, the PAUSE(EE) will be executed during PLAY, FAST FORWARD or
REWIND, but it will return only to the PLAY state when it is released. In order to return to the
previous state, add a virtual state frame and execute a deep-memorized transition for the state
frame.

55

@ Transition

M
TAPE

OFF PLA

NO_TAPE] PLAYZ (X3 A4 (@
e | A I

i} 1 2 3 4] & 7 g g
]| 0V 0M (HD s s s s s s ! ’ !
oFF 1| =HIFF |=HFF |=FF |=HFF |=30FF | =30FF FMFF |=30FF =X0FF
IM TAPE |2| # ESTWPEIPY | # s I - S I S £
OUT TAPE |3 - s =3¢ [=M | =3¢ | =H =31 =2 | =x | =x
[} 4| s s Fol=m = | = =3 | = | = |=m
>) s =33 £ =m | = =¥ | = [=35 | r
[] Gl ¢ =37 | =4 S| = ; Fol=rro| s
44 7| 7 s = | =¥ | =5 s £ = |/ s
1]] s £ =¥6 | =36 | =36 [=iFLaved s £ s
o |7 7 £ =:0 | £ s s I s s

Figure 7- 7 STM for a videocassette recorder (2)

When the parents have only one generation of children (when there are no grandchildren), the
deep-memoarized transition and memorized transition have the same meaning.

56

@ Transition

7.2. Transition and state type

Any states or state frames except for the following two can be specified as transition
destinations.

(1) Concurrent state

(2) Child states of concurrent brothers

The transition can be synchronized for concurrent states.

7.2.1 No transition to concurrent state

Transition to a concurrent state (including state frames) is not allowed. The concurrent state is
a state that can always be active along with another concurrent state. Making a transition
means to activate the transition destination.

Let’s take the concurrent state STM in Figure 5-1 as an example. "Telephone" and "TV" are
concurrent states, and it is not that only one of them can be active; both of them are active at
the same time. Therefore, a transition to one of "Telephone” or "TV" (activate) cannot happen.
The STM in Figure 7-8 was created from the viewpoint of the videocassette recorder's
manufacturer. The STMs in Figures 7-5 and 7-7 were created from the viewpoint of the user
who operates the videocassette recorder.

OM
TAPE
== === =s======= [l
n MOTOR
OFF M HEIAD-___:'_ ______________ e et e ccccccooo- :
ND—TAPE PLAY RECORD | IN OPERATION
STOP PAUSE
OFF | OW |OFF | 0N NORMAL FAST [REWIND
FORWARD
i} 1 2 a 4 o] [i &) 7] 10 11 12
0n O AN HY | r r £ & £ & & & £ & &
OFF 1 S |=x0
IN T4PE |2 - £ |=FTARE DD s - i - i i i - i i
OUT TAPE [#| - £ s =3M0_TAFE
[| 4 & & & & £ =m £ =6 & & =STOP =1STOP =.STOP
>] £ £ r r =35 F £ r =3Normal r £ ='Normal =>Normal
13 (=3 I I’ ! /. . I £ l= :EéSRTNARD I = }EéSRTNARD s = :EéSRTNARD
L L 7 £ £ £ £ /. . £ £ |=REWIND . = REWIND =REWIND .
=
1]] I s s P R B 4 Inoperaton |=PAUSE : [=3pAUSE . | =IPAUSE
P2
-y 2 £ £ r r & £ =ET & =:Normal & £ & &

Figure 7- 8 STM for a videocassette recorder (3)

The "HEAD" and "MOTOR" are concurrent states and are activated concurrently, so neither of
them can alone be specified as the transition destination. However, transition to the "TAPE"
status, which is the parent of "HEAD" and "MOTOR," is allowed because it is an exclusive state.
When a transition to "TAPE" occurs, "HEAD" and "MOTOR" are activated regardless of the
transition type for "TAPE."

57

@ Transition

7.2.2 No transition to concurrent brother state
Concurrent brothers cannot make transitions to a child of the others.

. qeeevone TV 1
ON
DISCONNECTED ON THE PHONE
NORMAL|MUTE

i) 1 3 4
Message for -
making a call 0 Dial 7 7 7

. [u] 4
Voice from the
other party 1 X Statel_tai(;njssage Mute 7
0
Busy tone 2 % Hang up Ve Ve
Interested
program s 4 4 Turn TV on 4 4
2 2

End of
program 4 4 4 X Turn TV off Turn TV off

Figure 7- 9 No transition to concurrent brother state

"Hang up after telling the message" when the "Voice from the other party" is heard while "On the
phone."

"Mute the TV sound " when the "Voice from the other party" is heard while the "TV sound is
turned on."

These two actions are processed concurrently. The "TV" state is ignored during the
"Telephone” state, while the "Telephone” state is ignored during the "TV" state. If one has to
worry about the other, they are not concurrent states.

In the example of the videocassette recorder in Figure 7-8, "HEAD" and "MOTOR" do not
interfere with each other in the transition. This is because the same event can be obtained in
concurrent states.

Note that it does not mean the concurrent state cannot be exited. Transition to the exclusive
state, other than the child states of the concurrent brothers, is allowed.

58

@ Transition

7.3. Synchronized transition
A synchronized transition is also allowed from the concurrent state within a synchronized state.
However, the synchronized state synchronizes to all the concurrent states.

A B C

0 1 : 2 : 3 : 4 : 5
E1 |O / =>A =>C =0 =>5 =>B
E2 (1 B =>0 =5 =>A =>C =>A

Figure 7- 10 Deadlock

A deadlock occurs in Figure 7-10 because the transition does not occur unless "B1/B2/B3/B4"
are all synchronized. Therefore, the synchronized transition is used. The synchronized
transition and synchronized state cannot be used at the same time.

7.3.1 Synchronization number

A B C
BL | B2 | B3 | B4
0 1 2 3 4 5
E1l / =>A(*1) | =>C(*2) | =>0 (*1) | =>5(*2) =>B
E2 B =>0 (*1)| =>5(*2)| =>A (*1)| =>C(*2)] =>A

Figure 7- 11 Synchronized transition

The synchronized transition is indicated by (*n). The n is called a synchronization nhumber.
Synchronization works only with states having the same synchronization number. Therefore,
when a transition of "B1" to "A" occurs after accepting "E1," a transition of "B3," which has the
same synchronization number, to the "A" state will be waited. During this wait, "B2" and "B4"
will accept events and execute corresponding actions, but transitions will not occur. To disable
the actions also, use the optional specifications of the CASE tool that supports the EHSTM.
The synchronized transition is performed on a first-come, first-served basis. When "B2"
executes "E1" first, for example, it waits for the synchronization of the "C" state.

The contention of transition type is also solved on a first-come, first-served basis. If a wait for
synchronization occurs in a fixed transition first, the transition type after synchronization is
ignored even if it is a memorized type, and a fixed transition is performed.

59

@ Transition

7.3.2 Wildcard transition
A wildcard transition can be specified for the synchronized transition. A wildcard transition is
represented by (**).

A B C
Bl B2 B3 B4
0 1 2 3 4 5
El 0 / =>A(*1) =>C =>0(*1) =>5 =>B
E2 1 B =>0(*2) | =>5 =>A(*) =>C | =>A

Figure 7- 12 Wildcard transition

The wildcard transition is a special type of synchronized transition. It has the characteristic of
adjusting to all synchronization numbers. When “E1” occurs first in “B1” and transfers to "A,"
"B3" can synchronize to either "E1" or "E2."

If "E1" occurs first for "B1," (*2) becomes the synchronization number. Therefore, "B3" waits for
"E2" to occur at the wildcard transition. When "E1" occurs for "B3," the transition is ignored
even though the action is executed. The wildcard becomes the object of synchronization.

If "E2" is activated first for "B3," the one executed next becomes the synchronization
number. Even if a transition without a synchronization number occurs while waiting for
synchronization at the wildcard transition, the transition is ignored, since it is ignored by
the synchronized transition.

60

@ Transition

7.3.3 Synchronized state and synchronized transition

The synchronized state is explained in 5.3.12, "Synchronized state.” The difference between
the synchronized state and synchronized transition is that the synchronized transition can
specify the transition destination for the synchronization in more detail.

[}l [l
TAPE
- - - - - - - - - - - - - - T - s s s s s s T r—-—- - - -~ - -~"-~-~"-~—~--—~"—- -~ - - - - =-— 7
QFF L ... THEAD . o] MQTOR ______._ J
WO_TAPE
PLAY RECORD
STOP | PAUSE IN
QFF o] QOFF 0N OPERATION
[i] 1 2 K] 4 b fi I F]]
Iol] O=zon () 7 i i i I i / 7 /
OFF 1]+ [=s0FF
IN TAPE |2| ~ £ |=3TaPED /! ! s / / / /
MOTOR OFF
PLAY RECORD =>nl.1>
OUT TAPE|3| ~ ! £ =sNO_TAFE, opp [="MWO_TAPE|_ o | =»MO_TAPE|=>NO_TAFE[[ORMAL
| 4| ! i F =23 F =25 i ! =:sTOP
» 5l ¢ | s / =34 / ‘ | TEE
NORMAL
W 6] s | s ; ; ; / P merromue | S
=M. 1>
44 |7 s iy £ ; £ ; s EWING £
=
|| 1 £ £ ! £ i ! £ In op(%r)ation =5-PAUSE |
q - =M. 1
[TS 7 / £ 7 £ =6 F NORMAL £

Figure 7- 13 Synchronized state example

Let's consider a practical example. See Figure 7-13. The state transitions of "HEAD" and
"MOTOR," which are the concurrent child states, will be synchronized because "TAPE" is a
synchronized state. Transitions within "HEAD" and "MOTOR" are unrelated to synchronization.
The transitions affected by the synchronization are the ones that exit "TAPE," which is the
parent state of "HEAD" and "MOTOR." In this example, =>NO_TAPE will be synchronized.
Even if a transition from "HEAD" to the "NO_TAPE" state occurs first, the "HEAD" will wait until
a transition of "MOTOR" to the "NO_TAPE" state occurs.

61

@ Transition

i b
TAPE
----—--—-—-—-—-—-—-—------ oo r----------~-~-~-~-~-~-~-~-~---—=-
OFF e HEAD | __ _________ Lo ______MOTOR _______._)
NO_TAFE
PLAY RECORD N
sTOP PAUSE OPERATION
OFF ON OFF ON w11
Q 1 2] 4]] 1] a
o] D Ezon | 4 i i i F £ ; i ;
OFF |1 # |=»0FF
IMN TAPE 2| # { |=>TAPED Iy / / / ‘ / /
PLAY OFF RESFOFRD MEEER
OUT TAPE[3| ~ i 7 |=ono_Tapemsng_tape N0 TARE] T L =oho_ape[PMECTAPE L SORAL
(1) o NO_TAPE
[] 4| s ! £ =33 £ =25 £ F =3STOP
- =M1
» Bl s £ by =34 Iy f 4 NORMAL !
f =MW1=
[£ £ £ / £ £ £ cophst £
=>M .1
A rii ! ! ! ! i/ i’ REWIND i/
II B £ £ £ / ' ! ! £ In op_eration ==PAUSE
Pl
- =M. 1z
e |7 v / / / / =26 ! ORMAL !

Figure 7- 14 Synchronized transition example

The synchronized transition synchronizes the specified transitions. In Figure 7-14, (*1) is
specified in four locations. The synchronized transition (*1) is specified for synchronizing a
transition to "NO_TAPE" while "HEAD" and "MOTOR" are in operation.

However, when "HEAD" is "OFF" or "MOTOR" is "STOP," caution must be taken when the
synchronized transition and normal transition are mixed because no special synchronization is
necessary. When "HEAD" is "OFF" the "PLAY" and "MOTOR" is "PAUSE," a transition to
"NO_TAPE" will occur independently when "HEAD" accepts an "OUT TAPE" event, even if
"MOTOR" wants to synchronize. As is shown in the example, the wildcard transition can be
specified when the other end wants to synchronize even if the own side does not necessarily
require synchronization.

62

@ Transition

an
]
TAPE
OFF L MEAD i MOTOR |
WO _TAPE PLAY RECORD N
STOP pause | OPERATION
0OFF o]l OFF o]l LI
1] 1 2 R} 4 b f] 2]
an OE=on(H) / i i i £ £ ! £ £
OFF 1| & |=»0FF
IN TAPE 2] ~ £ |=ETaRED £ /! f / f £ £
RECORD MOTOR
7 oo TapE LAY OFF Love rapel O =0 TapPE Eoho_TapE —SEFD
OUT TAPE £ F £ — =xNO_TAPE — FrNO_TAPE — — JORN
(i) Gi1) (i) 1) (i) b1 l{l\l(())(_R'I"\//-\;I/_?\’II_E
*1
[] 4] 7 i i =23 7 =3 ; i =:STOP
- =MW1
8 5l r ! ; =24 i ! ; NORMAL ;

Figure 7- 15 Wildcard example

Specifying a wildcard transition can match with the synchronization of the other. When a normal
transition occurs during a WAIT of the wildcard transition, the normal transition is ignored.

When a synchronized transition (*1) occurs during a WAIT of the wildcard transition, the
synchronized transition (*1) is used. The wildcard transition cannot coexist with the
synchronization state, since the synchronized transition cannot.

A "-" symbol is used just like -(**) for executing synchronization only, according to the transition
destination of the concurrent brother state when the transition destination cannot be decided by
its own state.

7.3.4 Forced transition

The forced transition is used to make a transition happen forcibly. The forced transition can be
used with the synchronized state. A forced transition to state number 0 occurs when 0(*) is
used. To use a forced transition to make a forcible transition to the transition destination
currently waiting for synchronization, write as -(*), as in the wildcard transition.

A B c
BL | B2 | B3 | B4

0 s 5

E1 |0 / =>A =>C =>0 =>5 =>B

E2 (1| B =>0 | =>5 =>A =>C =>A

Timeout|2| =>(*) | =A®) | =50 | =>-(% /

Figure 7- 16 Forced transition

63

@ Transition

7.4. Transition range
Making a transition within its own STM (a sheet of STM) is called a local transition. A transition
of another STM is called a global transition. Therefore, all transitions without hierarchies shall

be local transitions. There is one transition destination for each STM. Even though multiple

STM transitions can be specified according to the hierarchy, only one transition destination can
be specified for each STM.
An example of the state hierarchy for the videocassette recorder in Figure 7-5 is shown in

Figure 7-17.
[O
TALPE
orF NO_TAPE >
| (4 3 -4 ap
i1
i] 1 2 2 4 5 E
oM 0 = 0M (H) £ £ s 5 £ i
ofFF 1|« =MFF |=HFF | =30FF = HIFF =3FF =HIFF
IM TAPE [2| 7/ F¥TAFEIRD | » i s s s
OUT T&PE [3| 7 s =+ | =¥ =31 =3 =
[} 4| s P =32 =32 =32
» 5 s ; =3/ 102 |=3asm 1 s
[3 S = £ =34 s =4 s
44 7|/ £ =35 =35 £ s
1] =] I s s s s s
o 7| 7 ! =36 ’ s £ i
Figure 7- 17 STM for a videocassette recorder (4)

Wi
S EERN ||
o011 {213
> SR =30 =
L =H S =S
a4 =R =R S|
Il =¥ =33 (=33 =30

There are no synchronized or wildcard transitions for global transitions. This is because global

transition is synonymous with forced transition, in the sense that the transition is forced. For

global transition, write as [11.1>- in order to make a forced transition to the transition destination
that is in a wait for synchronization.

64

@ Transition

7.5. Format of transition
OLocal transitions
Transition destination name (transition type specification *n)
The transition destination name has to be a unique name.
Separate by a colon (:) if the name becomes unique in conjunction with
the parent state.
statel:state2:state3
Transition destination number (transition type specification *n)
Transition type specification
D: Fixed type
H: Memorized type
P: Deep-memorized type
The deep-memorized type is used when omitted.
*n
Forced transition by * only.
Wildcard transition when * is used for n.
n is the number that indicates the synchronization type.
Non-numeric characters are allowed in some CASE tools that
support the EHSTM design method.

[Global transitions

Local
transition
destination

Transition destination name
(transition type)

Transition destination
number (transition type

(*)The Uor Oattached to the head of STM names may be omitted.

oca
transition
destination
number

Figure 7- 18 Syntax of global transition

[For transitions from the action area
=> |ocal transition
=> global transition
Example[
=>0FF
=>3/[11.1>2

65

@Activity

8. Activity

The activity is a function or process that is called under specific circumstances. The specific
circumstances include the situation in which an event is detected or when a state transition
occurs. A function or process called when the specific event occurs during the specific state is
an action. Figure 8-1 shows the classification of activities.

Activity ___ Event Analyzer _ Start

— End
Hit — Start
— End
State Start
Mode(*)
End
— Dispatch(*)

— Trigger
—STM main Start

End
(*)cannot be used for an event-driven STM.

Figure 8- 1 Classification of activities

8.1. Event activity
The event activities are used for imbedding regular processing related to event occurrences.

Event occurred!
Perform event-analyzer activity.

)

Event-analyzer activity
Event A
Event B
] Event C
The event is
determined as event
B!

Perform event-hit

Figure 8- 2 Event activity

67

@Activity

The event-analyzer activity begins the activity if one exists when an event has occurred or is
considered to have occurred before event-analyzer processing is executed. The event-hit
activity begins the activity if one exists under circumstances in which the specific event has
occurred (after the event analyzer has been executed).

The event-analyzer and event-hit activities can be used together. There are three methods of
event analysis, and these can be mixed. Refer to Section 4.3, "Mixed events," for more about
mixed events.

There are six kinds of event-analyzer activities:

Event analyzer— Message [—Start activity
—End activity

| Flag —Start activity

—End activity

L In-mail —Start activity

—FEnd activity

There are ten kinds of event-hit activities:

Event hit —— Message — Start activity
—— End activity
—— Flag —— Start activity

— End activity

L In-mai L Start activity

L End activity

Interrupt | Start activity

| End activity

Function call [Start activity

— End activity

There are usable and unusable event activities, depending on the STM driven type.

[L): The details of the event analyzer and STM driven type are explained in 9, "Event analyzer,"
and 11, "Driven type," respectively.

68

@Activity

8.1.1. Event-analyzer start activity

The Event Analyzer Start Activity (EASA) is executed before event analyzer processing is
executed. Itis always called for flag events and when the STMs driven type is the state-driven
type.

Disconnected | On the phone
[l 1
Message for 1
making a phone |0 Dial !
call
’ I]
Voice from State the
the otther 1 X message
party Hang up
I]
Busy tone 2 ¥ Hang up

(EASA) Interrupt the current activity
Figure 8- 3 Event-analyzer start activity

When an EASA is set as shown above, "Interrupt the current activity” processing is called when

all events including "Message for making a phone call,” "Voice from the other party" and "Busy
tone" have occurred.

[L): The details of the STM driven type are explained in 11, "Driven type."

8.1.2. Event analyzer end activity
The Event-Analyzer End Activity (EAEA) is executed immediately before the wait for the next
event after event-analyzer processing is executed, and actions and transitions are processed if

any of those exist. It is always called for flag events and when the STM driven type is the state-
driven type.

Disconnected | On the phone
ErE 0 1
Message for 1
making a phone |0 Dial I
call
Voice from -
State the
the;"tther 1) message
party Hang up
I]
Busy tone 2 ¥ Hang up

(EASA) Return to the interrupted activity
Figure 8- 4 Event-analyzer end activity

When the EAEA is set as shown above, "Return to the interrupted activity” processing is called
which waiting for the next event after all events including "Message for making a phone call,”

"Voice from the other end" and "Busy tone" have occurred and the actions and transitions have
been completed.

69

@Activity

8.1.3. Event-hit start activity

The Event-Hit Start Activity (EHSA) is executed when the generated event is analyzed via the
execution of event analyzer processing.

Disconnected | On the phone
(13 Il 1
1
Message tor i
making a’i:]phone Dial £
call
’ 1]
Voice from State the
the other H message
party Hang up
1]
Busy tone o ¥ Hang up

Figure 8- 5 Event-hit start activity

When the "Message for making a phone call" event occurs, the "Take a note" activity is called.

8.1.4. Event-hit end activity

The Event-Hit End Activity (EHEA) is called when the actions and transitions have been finished
after event analyzer processing is executed and the generated event is analyzed.

Disconnected | On the phone
13] Ll 1
|;Eljes.sar‘:je for :
making a phone L Dial g
call
- I]
Voice from State the
the other 1 X message
party Hang up
I]
Busy tone = H Hang up

Figure 8- 6 Event-hit end activity

When "Message for making a phone call" occurs during the "Disconnected" state, the "Dial"

action is executed and a transition to "Busy" occurs. Then, the "Discard the note" activity is
executed.

The example of the above event-analyzer activity has the same meaning as describing the
actions as follows:

70

@Activity

Disconnected | On the phone

AE] il 1

Message for
making a phone | Take a note

ial
call Discard the '
memo
Voice from 0 h
the other i ;t:g;;gz
party Hang up
I]
Busy tone 2 Hang up

Figure 8- 7 Event-hit activity

8.2. State activity

The state activity is executed at intervals when the state becomes active or inactive.

[L): Refer to 10.5, "State scheduler and activity," for more about the activation timing of the
state activity.

8.2.1. State start activity
The start activity (SSA) is executed when the applicable state becomes active as a result of a
state transition.

N)
Disconnected: | On the phone
— Il 1
= Message tor 1
r.makmg(;:aa”phone] Dial
n
Voice from State the
the other 1 message
party Hang up
B t 0
usy tone o Hangup |

(SSA) Pick up a pen
Figure 8- 8 State start activity
Assume that a "Message for making a phone call" occurs during the "Disconnected” state. The

"Dial" action is executed, and a transition occurs from the "Disconnected" state to the "Busy"
state, thus activating the "Busy" state. The "Pick up a pen" activity is executed at this time.

71

@Activity

8.2.2. State mode activity
The state mode activity (SMA) is executed at all times while the state is active. The SMA
cannot be used if the STM-driven type is the event-driven type.

. Al I
Disconnected, [o, the phone
[l]
1
Message for I
making a phone : Dial
call)
Voice from 0
the other 1 State the
party message
Hangup X
— L b I:l
Busy tone = Hang up

(SMA) Draw a circle
Figure 8- 9 State mode activity
The "Draw a circle" activity is called as long as the "On the phone" state remains active.

8.2.3. State end activity
The state end activity (SEA) is called when the state becomes inactive.

o e
Disconnected: | On the phone
[l 1
1
Message for |
i+ making a phone Dial
! call !
’ 1]
Voice from S h
the other 1 tate the
party n;essage
ang up
1]
Busy tone 2 Hang up

(SEA) Put the pen down
Figure 8- 10 State end activity

After the "Voice from the other party" or "Busy tone" event occurs during the "Busy" state and
the "State the message, hang up” or "Hang up" action is executed, the "Put down the pen "
activity is executed immediately before a transition from the "Busy" state to the "Disconnected”
state occurs.

If the SSA is set in the "Disconnected" state, it is executed once the "Put down the pen " activity
is complete.

[L): The execution order of SSA, SSE and actions can be changed. This will be explained in
8.6, "Order of actions and activities."

72

@Activity

8.3. Dispatch activity

The dispatch activity is activated each time a dispatch occurs. A dispatch is a switch of states in
the state-driven STM. It is different from the state mode activity, in which the scheduled activity
associated with a state is activated. Even if the function to be described as the dispatch activity
is described as the state start activity for all functions, it cannot substitute the dispatch activity.
This is because the dispatch activity is also executed at the moment the ready state is
changed to active in order to achieve the concurrent state, in addition to activation via
the occurrence of a transition. Rather, describing in the state mode activities of all states can
substitute for dispatch activity. The state type of the state-driven STM is the same regardless of
whether it is the exclusive or concurrent type. Normally, the dispatch activity is described when
the system has to be monitored and controlled at all times.

The dispatch activity does not exist for the event-driven STM because there is no Dispatching of
states. If the event is P-type in the event-driven STM, the event-hit activity substitutes the
dispatch activity.

ZKILL
DEAD
ZKILL ZALIVE
Synchronized
State t i @ tralmsmon
tate transition SUSPEN Lr'elease
did not hit WAIT
@ Wait for
State transition did not hit synchronized
(S)State transition hit transition
READY Event analyzer for the ACTIVE
T previous completed stat

Event analyzer for
@ the completed state @ Start @ Dispatch

@ End @Mode

Figure 8-11 State transition of state driven STM states

73

@Activity

D Disconnected | On the phone
[1
[S1E] i
Message tor -
making a phone 0 Dial
call
.]
Voice from State the
the other |1 I message
party Hang up
i]
Busy tone = Hang up

(D)"Monitor if birds come to eat the food"

Figure 8- 12 Dispatch activity

When the above STM is defined as a state-driven type, "Monitor if birds come to eat the food" is
always executed in any state.

L): The STM driven type is explained in 11, "Driven type."

8.4. Trigger activity
The trigger activity has the same characteristics as the trigger event.

(5 VE M)

On the phone

_Disconnected

[T] 0]
1

Message tor 0

making a phone Dial
call

1]
Voice from 1 State the
the other message
party Hang up

1]
Busy tone b Hang up

(T)"Place the food"

Figure 8- 13 Trigger activity
"Place the food" processing is executed immediately after the program designed by the above
STM starts the operation. Then, it waits for an event. Normally, the system's initial processing
is described as the trigger activity.

[L): Refer to 4.4.8, "Trigger event," for the trigger event.

74

@Activity

8.5. STM main activity

The STM main is explained in Chapter 14. The STM main controls the calls of the state
transition matrix mechanism. The STM main’s start activity is the activity called before a series
of state transition matrix mechanisms starts. The STM main’s end activity is the activity called
once the operation of a series of state transition table mechanisms is complete. Note that these
activities mark the start and end of the state transition matrix mechanism but not the start and
end for the system. Such a delimiter (start and end) of the system is usually implemented by
means of the state activity or event activity. The STM main usually has an infinite-loop
structure. The STM main’s start activity is called at the beginning of the infinite loop, which the
STM main end activity is called at the end of the loop.

while(1){
STM main start activity

STM main end activity

8.6. Order of actions and activities
The order of actions and activities is as follows:
Action > End activity - Start activity
Even though the following orders can be used, the choice as to whether or not to implement
these orders depends on the specification of the tool supporting the EHSTM design method.
End activity = Action - Start activity
End activity - Start activity = Action

Specify '-' in the transition destination when executing the action only, without executing the
activity. If the same state number or state name as that of the current state is explicitly

specified, the state activity will run.

statel state?
1 2
eventl | 1 =>- =>2

Figure 8- 14 No transition specification

75

@Activity

Because no transition or action is executed, a temporary operation can be processed by
providing an in-mail as an event.

The order of actual activities differs, depending on the STM driven type.

(1)For the event-driven type

1 STM main start

2 Trigger (executed only once at the activation)

3 Event-analyzer start

4 Event-hit start (not executed when the event does not hit)

5 State end (nhot executed in the initial state or when the transition does not occur)
6 State start (not executed when the transition does not occur)

7 Event-hit end (not executed when the event does not hit)

8 Event-analyzer end

9 Event-analyzer end

When the concurrent-type STM is used, 5 and 6 are repeated for the number of concurrent
states that are ready.

(2)For the state driven-type

1 STM main start

2 Trigger (executed only once at the activation)

3 Dispatch

4 State mode (not executed in the initial state)

5 Event-analyzer start (not executed in the initial state)

6 Event-hit start (not executed when the event does not hit)

7 State end (not executed in the initial state or when the transition does not occur)
8 State start (not executed when the transition does not occur)

9 Event-hit end (not executed when the event does not hit)

10 Event-analyzer end (not executed in the initial state)

11 STM main end

When the concurrent-type STM is used, ® through p are repeated for the number of concurrent
states that are ready.

The order of event analyzer execution is (1) message, (2) flag and (3) in-mail.

76

8.7. Format of activity

Activities can describe mostly the same information as actions do.

: Human-language statement

: Computer-language statement
: NS chart

: Event hierarchy STM call

: Subroutine STM call

: Library STM call

: Divided action cell

: EHSTM system call

: Transition symbol

OCoOO~NOULAWNPE

1: Refer to 6, "Action," for each action.

@Activity

77

@Activity

78

@Event analyzer

9. Eventanalyzer

The event analyzer is used to retrieve and analyze events, and for detecting the event number
on the STM. Therefore, to be precise, there are two types of tasks, event retrieval and event
analysis, and sometimes these are collectively called event analyzers. There are four types of
events: variable, interrupt, in-mail and function call.

9.1. Variable event analyzer

To analyze the variable, comparisons are made using conditional statements ("if" and "switch"
statements) to detect what the variable event is. Refer to the example in Chapter 4.4 showing
what kind of event analyzer is generated from the event cell. The "if-else" rule is used as the
default event analyzer for analyzing events in STM event cells, and the analysis is performed in

the order from the event with the youngest event number first.

& 2 Event A +
Frame B EventB :
"Frame A Event C
‘Frame C
Event D

if(Frame A){
/I event-hit start activity
if(Frame B){
if(Event AY{
/I event number 0

}
else if(Event A){
/I event number 1

}

/I event-hit end activity

else if(Frame C){
if(Event C)Y{
/l event number 2

}
else if(Event D){
/I event number 3
}
}

if(FrameA){
/I event-hit start activity
if(C)
if(Event D){
/I event number 3

}
if(Event C){
/I event number 2

}

}
if(Frame B){
if(Event B){
/I event number 1

}
if(Event A){
/I event number 0

/I event-hit end activity

}
}

Figure 9- 1 Event analyzer

Events are analyzed in the order from event number 3 to number 0, and the "if-if" rule is used
for the analysis rule. By using the "if-if* rule, a single event can drive the STM multiple times.
There may be cases in which the variable becomes the event number. In these cases, the
event analyzer is not executed and the STM is simply driven using the value of the variable.

L: Refer to 4, "Event," for event types.

79

@Event analyzer

9.2. Event analyzer and variable access method

There are three access methods for variable events: the mail type, synchronized type and flag
type. The access method specifies how to retrieve events regardless of the event analyzer.
This is called an event acquisition function.

9.2.1. Flag variable access method

The flag variable access method reads only the value of the variable directly, so no event
acquisition function is necessary. Access to the variable is achieved by executing the event
analyzer immediately. The change of variables can be monitored at all times by calling the
event analyzer from inside the infinite loop of the program.

9.2.2. Mail variable access method

If the event is set to the communication type using the RTOS, a procedure for retrieving
messages and copying messages to the variable (copying may not be necessary), etc., will be
necessary. This procedure is written as the event acquisition function.

Entire
message Event
contents acquisition
function
. Message
pointer
Event
analyzer
Message function
body

Figure 9- 2 Communication variable access method

The message is a mechanism existing almost only for the event-driven structure. The use of
messages is recommended when designing a system using the event-driven exclusive-state
STM.

A task has a message at a single location (RCV_MSG). While there is no message, "wait" is
used so that the CPU is not wasted. When a message arrives, it is picked up by the RTOS and
thrown into the event analyzer. The event analyzer examines the message, retrieves the event
number and transfers the control to the STM drive mechanism.

Postal matters have several types, including postcards and envelopes. Likewise, messages

80

@Event analyzer

have various types. The entire content can be sent via a single message, or the body of the
message is placed in the global memory and the pointer to the memory storage is notified as a

message.
= | | Message' Task
1SND TVETS RCV M3
M Event
ZO— essage retrieval>

—_

o—

—_— e
o Event
o — analyzer

Figure 9- 3 Message and input port

The change in the input port cannot be known unless a message arrives, because the task does
not start until the message is delivered. By changing RCV_MSG to PRCV_MSG, the input port
can be monitored without shifting the task to "wait,” even if there are no messages.

[1: Refer to 4.2, "Variable access method," for variable access methods.
Refer to the documents relating to the RTOS for detailed operations.

9.2.3. Synchronized variable access method
If the synchronized variable access method is realized using the RTOS event flag (WAI_FLG),
the task does not occupy the CPU unnecessarily because the task waits until the event occurs.

Interrupt

Interrupt

handler
WAI_FLG
0 0]
ISET_FLG > \/ |
EVENTFLAG ID 4

Figure 9- 4 Synchronized type waiting for a single event

However, the task enters the wait for the WAI_FLG event flag, other flags cannot be monitored
(9-5). This is not desirable for the STM design that would need to wait for multiple events.

81

@Event analyzer

Interrupt

-

ISET_FLG

Interrupt
handler

WAI_FLG

S v
Input port EVENTFLAGID [°F

© AV

Figure 9- 5 Synchronized type waiting for multiple events

The task can monitor both flags in a single wait by connecting two handlers to EVENTFLAG
(Figure 9-5). Even though the task could synchronize with handlers 1 and 2, it cannot know
which handler the setting is from. In this case, provide an external variable that shows the type
so that it can be known from which handler the setting comes. The event analyzer examines
this external variable.

Interrupt 1

Interrupt
E handler
1

WAI_FLG

ISET_FLG > \/

Interrupt 2
(|nterrupt EVENTFLAGID

I 02

handler
2

AN

Figure 9- 6 Synchronized type waiting for multiple events with a single event flag

The WAI_FLG is convenient for achieving the concurrency of activation for multiple events
awaited by a task using a single flag set.

82

@Event analyzer

Interrupt

Pz

ISET_FLG

WAI_FLG

02

EVENTFLAGID

Task

WAI_FLG

Figure 9- 7 Notifying multiple tasks simultaneously

9.3. In-mail analyzer

The in-mail analyzer analyzes the in-mail events. The in-mail does not care whether or not the
RTOS is installed. The in-mail buffer defined by the STM is analyzed by the in-mail analyzer to
drive the STM. The in-mail analyzer's default rule described in the event cell is the same as that
of the event analyzer. The in-mail analyzer and event analyzer are individually prepared for
each STM.

Message
gueue/variable

In-mail acquisition
function

In-mail analyzer
function

(

Event-acquisition
function

Event-analyzer
function

In-mail buffer «

Internal event

Figure 9- 8 In-mail

By default, the in-mail analyzer function is executed until the in-mail buffer becomes empty after
the event-analyzer function is completed.

83

@Event analyzer

while(TRUE){
/I event-acquisition function

I/l event-analyzer function
/I STM drive
while (in-mail buffer becomes empty) {

/l in-mail acquisition function
/l in-mail analyzer function

/I STM drive
}
}
9.4. Interrupt event analyzer

The interrupt event analyzer is created within the interrupt handler. Interrupts can be handled
by setting a variable from the interrupt handler so that interrupts can be received as polling
events, or by transmitting a message from the interrupt handler so that interrupts can be
received as communication events, without writing in the STM directly as an interrupt type. If
the event is described directly to the STM as the interrupt type, the interrupt handler will drive
the STM. The interrupt type is separated from other events by drawing sloped lines at the top-

left and bottom-right of the event column.

interrupt void DEV_I(void)

{
switch(stat){

caxeINIT OK:
event ho—

_ 2_break;

C%%/eeln'}l In-[a—ERFg_break;

CRRRERP-OK reak:

&en noD—E_Rg:)reak;
SITM drive (event no

}

);

h

Ent Dev_Init(DEVINFO* cInfo) |0

Ent Dev_Read(DEVINFO* cinfo)| 1

Vv

{

event no

}

interrupt void TimeOut(void)
: = 6; ‘_|_'
STM drive (event no)

INIT_ OK |2

INIT_ERR (3

—DEV_| stat

READ_OK |4

A

READ_ERR 5

’

TimeOut

A

Figure 9- 9 Interrupt type

The default rule of the event analyzer is the same as that of the variable type.

84

9.5. Function-call event analyzer

@Event analyzer

The function-call event analyzer has the same mechanism as the interrupt event analyzer. The
event analyzer is executed in a function of the function-call type, and the STM is driven.

int Dev_Init(DEVINFO* cInfo)

{
= 0;
event nq).
}STM drive event
number

int Dev_Read(DEVINFO* cInfo)

{
=]_;
event n?):
}STM drive event
- number

’i‘l‘l(Dev_Init(DEVINFO* cInfo)
—

int Dev_Read(DEVINFO* cInfo)

INIT_OK

INIT_ERR

DEV_| tat
READ_OK

‘\ READ_ERR

' TimeOut

Figure 9- 10 Function-call type

A

85

@Event analyzer

86

@State scheduler

10. State scheduler

The state scheduler schedules the state described in the STM. Even for the exclusive state
STM in which all of the states are exclusive, a parent schedule occurs when an activity is
installed in the state frame.

ZKILL
> DEAD
ZKILL ZALIVE
A Cancel
@ , synchronized
Missed by state transition transition
SUSPEND L WAIT
Missed by state transition Wait for
synchronized
transition
it by state transition
A\
Event analyzer for the previous
— READY state is complete @ ACTIVE

Event analyzer for the state

@ is complete @ Start @Dispatch
@ End @ Mode

Figure 10- 1 State scheduler

The following schedules occur:

(1)Parent-and-child schedule

(2)Concurrent schedule

(3)State tree schedule

There are occasions when you will wish to set priorities for the states, especially the concurrent
states. In EHSTM Ver. 2, the state priority can only be defined by the scheduling as described
below. The detailed definition of a state priority depends on the specification of the CASE tool
supporting state schedulers. EHSTM Ver. 3 will have the priority definition of states and events.

87

@State scheduler

10.1. Parent-and-child schedule
When the child state is specified as the transition destination, its parent becomes ready first.

o Telephone & TV
ON
iDisconnected On the phone OFF
NORMAL|MUTE
Message for ? 1 < 2 4
making a phone
call O ba 7 7 / 7
Voice from the o 0 1 4
other party 1 % State the message
Hang up 4 Mute 4
===
Busy tone 2 x — Ve Ve e
Hang up
Interested 3
rogram 3 .
prog : 4 4 Turn TV on 4 4
End of 2 2
program 4 e e %
Turn TV off Turn TV off

Figure 10- 2 STM of telephone and TV

See the example for telephone and TV in Figure 10-2 .

O[Telephone] [O|[Disconnected]
[On the phone]

O [TV] [O®[OFF]
[o[iﬂ [NORMAL]
[MUTE] OReady: @Active

Assume the "Interested program" event occurs during the "OFF" state. After the "Turn TV on"
action is executed, a state transition to "NORMAL," which has state number 3, occurs. The
order of readiness is "ON," then "NORMAL." When the child is the transition destination, the

parent always becomes ready first. The order of switching from READY to SUSPEND is from
child to parent.

O[Telephone] Ol[Disconnected]
[On the phone]
O [TV] [OFF]
O[ON] @ [NORMAL]
[[MUTE]

OReady: @Active

When the "End of program" event occurs during the "NORMAL" state and upon transition to the
"OFF" state, "ON" and "NORMAL," which have been READY or ACTIVE until now, become
SUSPEND in the order of from "NORMAL" to "ON."

88

10.2. Concurrent schedule
There are two types of concurrent schedules:
(1)Default type (D-type)
(2)Dispatch type (P-type)
By the default type, the priority of switching for the concurrent state to READY and ACTIVE is
given to the default side. By the dispatch type, the entry to the right of the state that became
READY first the previous time is switched to READY first. The priority returns to the HEAD if
there is nothing to its right. In other words, the READY priority of the concurrent states

@State scheduler

circulates.
0N
TARE
oFF o reo) wooR
ND_T-'!'-F'E PLAY RECORD In operation
STOP | PAUSE o
OFF | OW |OFF | OK O A RWARD NP
i 1] ald4 [5 [68 |7 5] a 10 11 12
N Ofs0M HY | ~ - P I A A I i/ i/ s i
o 1| v f=m0 | - - -
IN TapE |2 P 1t S R A I I I I i; Iy
OUT TAPE (3| !) 22| ' ' ' ' ' ' ' '
[L I A - s A Y o= = =38
[3 il o - o o T B B ! S| =Hl | =40
e |G ¥ I - P R A Y I 53) £ | =ni i =11
44 |7 & - A I A A £ =mz | =2 s
=3
] 1 Y I - P I R A £ operation’ | =39 | =38 | =38
Q)
0 |7 f & - v A S L 1 s s 4 s
Figure 10- 3 Videocassette recorder STM
[OFF]
O [ON] — @ [NO_TAPE]
— [TAPE] — [HEAD] — [PLAY] — [OFF]
— [ON]
— [RECORD] — [OFF]
— [ON]
— [MOTOR] — [STOP]
— [PAUSE]

[In operation] — [NORMAL]

— [FAST FORWARD]
— [REWIND]

89

@State scheduler

When the "IN TAPE" event occurs, a transition to "TAPE" occurs. Because "HEAD" and
"MOTOR" are concurrent, "HEAD" always becomes READY before "MOTOR" if the default type
is set for the concurrent schedule. If the dispatch type is selected for the concurrent type, the
READY priority is given to “MOTOR?” if “HEAD” took priority previously, and the priority
circulates among concurrent brother states.

[OFF]
O [ON]— @ [NO_TAPE]
— [TAPE] — OJ[HEAD] — OJ[PLAY] — [OFF]
— O|[ON]
— [RECORD] — [OFF]
[ON]
— O[MOTOR] —— [STOP]
— [PAUSE]
— O/[In operation] — [NORMAL]
___ [FAST FORWARD]
~__ [REWIND]

Assume a videocassette recorder as described above is in the “PLAY” state and an "OUT
TAPE" event occurs when the "TAPE" state is active. The order of changing from READY to
SUSPEND is from child to parent. This is the reverse of the order in which SUSPEND becomes
READY, i.e., from parent to child. If the order of changing from SUSPEND to READY is

"TAPE" -> "HEAD" -> "PLAY" -> "ON" -> "MOTOR" -> "In operation" -> "NORMAL,"

the order of switching from READY to SUSPEND will be as follows:

"TAPE" <- "HEAD" <- "PLAY" <- "ON" <- "MOTOR" <- "In operation" <- "NORMAL"

Even if a transition occurs from the "ON" state and causes to suspend READY, the "ON" state
does not become SUSPEND first.

90

10.3. Tree schedule

There are two types of tree schedules:
(1) Vertical type (V-type)

(2) Horizontal type (H-type)

@State scheduler

The vertical tree schedule operates by giving priorities to parent-and-child relationships upon
the change from SUSPEND to READY. The horizontal tree schedule operates by giving
priorities to brother relationships upon the change from SUSPEND to READY.

O
TARE
oFF M woor
NO_T4PE PLAY RECORD IN OPERATION
STOP PAUSE
OFF | ON |0OFF | OK NORMAL 'IFOEC\?/IRD REWIND
0 1 = 14 [51817 g 2 10 1 1z
N OF0NH) |~ - P I I B I i/ i/ £ Iy
o |1+ |=| - - -
IN TapE |2| 7 P 2t S A I R A I ; ; s Iy
OUT TAPE [! L St I (N ' . ' ' ' '
[Uy A o B e A A s A= =3 | =3
[3 1 & s - T A A R R ¢ do| EHD | =HD
TR (1 s s E I A B I ol P B I =11
“4 |7 S , o I N A S S Ao |=me | =2 s
I I . - £ i - r i~ !(%))eration =34 =34 =ia
Y) , o I A T A A 4 s
Figure 10- 4 Videocassette recorder STM
[OFF]
O[ON] — @[NO_TAPE]
— [TAPE] __ [HEAD] [PLAY] _ [OFF]
__ [ON]
— [RECORD] ___[OFF]
[ON]
— [MOTOR] — [STOP] _
__ [PAUSE]
[IN OPERATION] —— [NORMAL]
— [FAST FORWARD]
— [REWIND]

"NO_TAPE" makes a transition to the "TAPE" state when it accepts an "IN TAPE" event during
the active state. At this time, changes from SUSPEND to READY occur in the following order if

vertical (parent type) scheduling is specified:

"TAPE" - "HEAD" - "PLAY" - "OFF" - "MOTOR" > "STOP"
When the horizontal (brother type) scheduling is specified, the order is:

91

@State scheduler

"TAPE" - "HEAD" - "MOTOR" - "PLAY" - "STOP" > "OFF"
Changes from READY to SUSPEND will follow the above order in reverse.

10.4. State scheduler and transition

The three transition types (default transition, history transition and deep history transition) do not
affect the concurrent scheduler types.

For example, if the transition "=>TAPE" described in the action cell for state number [2] of event
number [2] is changed to "=>TAPE(D)," the child state of "HEAD" is simply changed to "PLAY"
and "OFF" is selected as the child state of "PLAY." This is not for specifying the priority of the
schedule. If "=>TAPE(H)" is stated, the one that was READY last time is simply selected as the
child state of "HEAD" and the default is specified for the grandchild, but the priority of the
schedule is not specified. If "=>TAPE(P)" is stated, the child state of "HEAD" is simply selected
to the one that was READY previously, and the one that was READY last time is specified for
the grandchild, also. Specifying the priority of the schedule is independent of this operation.

10.5. State scheduler and activity

The event activities and trigger activities are not related to the state scheduler. On the other
hand, the state activity and dispatch activity are related to the state scheduler. This relationship
is shown in Figure 10-5.

The state start activity is executed when SUSPEND changes to READY. The state end activity
is executed when READY changes to SUSPEND. The state mode activity is executed as long
as it is active. A dispatch activity is executed each time a dispatch occurs.

92

@State scheduler

ZKILL
DEAD
ZKILL I ZALIVE
@v Release
state transition did not hit| SUSPEND *ytr;gﬂg?t?c')zned WAIT
state transition Q not hi Wait for
synchronized
() Hit by state transition transition
Event analyzer for the
— READY (previous completed state @ ACTIVE

Event

analyzer
the completed state

for

c

Start @ Dispatch

End @ Mode

Figure 10- 5 State scheduler STD

SUSPEND | READY |ACTIVE EAD AlT
0 1 2 3 4
Hit by state transition
0 @ / L el_se_ i / /
Missed by state transition 1 4 @ @ !
=>SUSPEND | =>SUSPEND
Event analyzer for the @ @
previous state is complete 2 x x /
=>ACTIVE
Event analyzer tor the state » @
. X
is complete 3 /
=>READY
ZKILL 4 =>DEAD =>DEAD x ,
5
ZALIVE / / =>suspeNd /
Wait fqr the synchronized . y —SWAIT y ,
transition
Release synchronized
transition 7 X X X |=>SUSPENI

Figure 10- 6 State scheduler STM

@State scheduler

10.6. State scheduler and interrupt event
All interrupt events perform event-driven actions regardless of whether the driven type is
defined as event-driven or state-driven. In other words, all action cells that cross with READY

concurrent states are called.

statel state? state3

INT 4 Action1 Action2 Action3

Figure 10- 7 Interrupt event for concurrent states
In Figure 4-24, Actionl, Action2 and Action3 are called when the "INT" occurs. The order of the
calls depends on the state scheduler. The function that keeps the same schedule order by
initializing the READY authority upon interrupt is not specified in this document, but depends on
the specification of the tool supporting the EHSTM.
(L) Refer to 8, "Activity," 11, "Driven type," 5, "State" and 4, "Event," for the activity, driven type,

concurrent state and interrupt event, respectively.
10.7. Format of state scheduler

The state scheduler is not specified on the STM. It is usually set as a property of the STM by
the tool that supports the EHSTM design method.

94

@ Driven types

11. Driven type
There are two driven types of STMs: the event-driven type (E-type) and state-driven type (S-
type).

11.1. Event-driven type

The event-driven type waits for events at one location in the program. For the wait method the
RTOS structure can be used if it is installed, or sensing of the flag (so-called polling) by the
program may also be used. The important thing is to wait for an event at a single location,
making it possible to receive any event under any state. The received event undergoes the
event analysis and the event number assigned within the STM is calculated, then the action at
which the event and current state number cross is called.

Event-driven type

0o

Event
analyzer

Figure 11- 1 Event-driven type

o reeewone % TV
ON
DISCONNECTE ON THE PHONE OFF
NORMAL|MUTE
4] 1 2 3 4
Message for 1
making ZTI phone:|0 Dial e e e e
cal
Voice from the B 0 _ 4
other party 1 W State the message e a
Hang up Mute
0
Busy tone 2 x e i i
Hang up
Interested .
program 4 4 TunTVon , 7 7
End of program = =
4
4 4 X Turn TV off Turn TV off

Figure 11- 2 STM of telephone and TV

95

@ Driven types

We'll use the example of a telephone and TV in Figure 11-2. When the currently ready states
are "Telephone"-"Disconnected" and "TV"-"OFF," there is no scheduling of a state in the event-
driven type. Instead, events are awaited at a single location. When an event occurs after a
while, the ready states are activated in sequence. Vertical scheduling and horizontal scheduling
are the types used for specifying the sequence. In addition, default scheduling and dispatch
scheduling are used as the priority scheduling for concurrent states. In this way, the event-
driven type activates the state only after an event occurs.

The event-driven STM is declared in the highest-level STM via the [0 symbol.

11.2. State-driven type

The state-driven type monitors events for each state. It does not wait for (or does not analyze,
to be more accurate) events pertaining to no use or invalidity in the matrix. The “cyclic
executive” is easily performed for the S-type because it accepts events for each state and the
events to be analyzed for the state are predetermined.

State-driven type

analyzer

-

ey
, Event .
iL\/V\Fé -0

Let's use the example of the telephone and TV in Figure 11-2. In the state-driven type, when
the states currently ready are "Telephone"-"Disconnected" and "TV"-"OFF," the event-analyzer
function associated with each state is initiated and whether or not an event has occurred is
checked each time one of the "Telephone," "Disconnected,” "TV" or "OFF" states is activated.
Even if no event has occurred, one of the states is always active.

The state-driven STM is declared in the highest-level STM using the n symbol.

96

@ Driven types

11.3. Driven type and event
Caution should be exercised concerning the types of handled events depending on the driven

type.

RTOS not required ;
(it can exi%t) RTOS required
: Interrupt | Synchronized
Polling type type type Message
Event- Queue
driven CPU rglsource management
type problem problem
grti"\i/teer; Task wait |Task wait problem
type problem

Figure 11- 4 Driven types and event types

In the event-driven STM, events are awaited at a single location within the program. If polling-
type events are handled by the event-driven type, the CPU resource is always used. This is not
a problem, however, when the RTOS is not installed or when there is only one task, even if it is
installed. When synchronized events are handled by the event-driven type, one event flag is
shared. Then, a variable is necessary to identify the specific event from the shared event flag.
When a variable is used, it is necessary to pay attention if it is overwritten. If the variable is
overwritten, it has to be in the form of a queue.

The state-driven type has a structure that accepts events in each state. When synchronized
events are handled by the state-driven type, the task waits for synchronization within the event
analyzer associated with a single state. Therefore, even in the concurrent state, the task itself
will be in the wait state and concurrent processing may not be possible. This also applies to
message events.

97

@ Driven types

11.4. Driven type and state
In the event-driven type, a state is activated at the time the event is captured. In the state-
driven type, the state scheduler activates a state via dispatch.

State
O\ type Exclusive Concurrent
Driven
type
Event- All events are awaited at a All events are awaited at a
driven single location. single location.
Call actions from a single Call actions from multiple
type state. states.
State- | A single state checks whether Multiple states check
driven the specific event has whether the specific event
type occurred. has occurred.

Figure 11- 5 Driven type and state type

11.5. Driven type and action
In either driven type, the action cell is executed where the event occurred and the currently

active state cross.

11.6. Driven type and transition
Transitions are executed in the same way for either driven type.

11.7. Driven type and activity

In the event-driven type, the dispatch activities and state-mode activities cannot be used

because the state scheduler is not operating all the time but is activated when an event is

received.

State State State Dispatch Event Event Event hit | Event hit | Trigger

start end mode Analyzer | Analyzer start end

start end

Event-driven O O X X O O O O O
type
State-driven O @) @) @) @) @) O O O
type

98

Figure 11- 6 Driven type and activities

@ Driven types

11.8. Driven type and event analyzer

There is no close relationship between the driven type and the event analyzer. There are three
kinds of event analyzers: the message (mail or synchronized) event analyzer, flag event
analyzer and in-mail event analyzer. These event analyzers can be allocated to each STM or
state.

o TELEPHONE TV
ON
DISCONNECTED ON THE PHONE OFF
NORMAL|MUTE
4] i 2 3 El
Mke_ssage IEor 1
making a phoner
g & phoner|g Dial Ve Ve Ve e
Voice from the Q 4
other party |1 by State the message e Mute 7
Hang up e
Busy tone =
2 = Hang up e S e
Interested d
program 3 e e Turmn TV on , / 4
End of = 2
program |4 e e x Turn TV off Turn TV off

Figure 11- 7 STM of telephone and TV

The following shows the event analyzer of Figure 11-7 created for each STM.
if(message for making a phone call){
/I event number 0

else if(voice from the other party){
/l event number 1

else if(busy tone){
/I event number 2

else if(interested program){
/l event number 3

else if(end of the program){
/[event number 4

}

99

@ Driven types

The following shows the event analyzer of Figure 11-7 created for each state.
(1)Event analyzer associated with the "Disconnected"” state
if(message for making a phone call){
/I event number 0

}
(2)Event analyzer associated with the "Busy" state
if(voice from the other party){

/l event number 1

else if(busy tone){
/I event number 2

}
(3)Event analyzer associated with the "OFF" state
if(interested program){

/I event number 3
}
(4)Event analyzer associated with the "NORMAL" state
if(voice from the other party){

/I event number 1

else if(end of the program){
/I event number 4
}
(5)Event analyzer associated with the "MUTE" state
if(end of the program){
/l event number 4

}

The event analyzer defined for each STM can be used in the event-driven or state-driven
program structure.

100

(DDepartment

12. Department

The department is a framework that defines the target of the STM design.

The following departments can be designed by the STM in the implementation environment for
which no RTOS is installed:

Q) Main section

(2) Library section

3 Interrupt-handler section
4) Device-register section

The following departments can be designed by the STM in the implementation environment for
which the RTOS is installed:

(1) Task section

(2) Library section

3) Interrupt-handler section
4) Device-driver section

(5) Device-register section

101

(DDepartment

12.1. Department under non-RTOS

The main section enters an infinite loop, the event analyzer of the main STM is executed, and the
variable event is captured. The device-register STM becomes the external environment from the
CPU's viewpoint and generates interrupts. The interrupt is captured by the interrupt-handler STM,
then the result is written to the variable and passed to the main section. The library section is called
as a function-call event from the action or activity of the main section. The device section is an
STM that describes how to respond to command registers such as various LSIs. This STM does
not usually become a program code, but is used for simulations conducted without the target or
code.

External-environment Design target

target STM Library B STM
C
C C
(AR O E
C Flag event A
Device-register Interrupt-handler Main (O) STM Library C STM
A STM A STM
C
—p L
C
P Sl
Hierarchy (0,1) Hierarchy (0,2)
ST™M ST™M
C C
O [T =—X4 |-
))) Flag event B))
Device-register (10) library Subroutine A Subroutine B
B STM STM ST™M ST™M

Figure 12- 1 RTOS Departments under non-RTOS

There are cases in which an interrupt event is incorporated in the main STM but the STM for the
interrupt-handler section is not created. When the main section needs to be conscious of interrupts,
design so that the main section handles interrupt events. When state management via the interrupt
handler is necessary, create the interrupt-handler STM.

102

(DDepartment

12.2. Department under RTOS

The RTOS implements the multitask structure instead of the single-path program structure. A task
STM is designed for each task. The library section is called from the task section via a function-call
event. Exclusive control when sharing the library among tasks is performed using the semaphore
mechanism of the RTOS within the action of the task section. It is convenient when message-type
events are used in the task section, because events from device drivers and other tasks can be
accepted. The events can be used as synchronized events for analyzing variables, or as flag
events. Refer to Chapter 9, "Event Analyzer." Interrupts are captured by the interrupt-handler
STM. The device-driver section is called from a task as call, capturing interrupt events.

External-)
environment Design target
target STM ST™M

Task (1) Task (1)
subroutine library
STM STM
C
'
= = >
r C
Device Interrupt Hierarchy (1.1) Hierarchy (1.2) C
register A handler A STM STM
STM STM - - C
Common - “Common™
subroutine library
— STM STM —
Tk
IS
. | AI Task (2) L
Device register B (10) library | ST™ C
STM STM C
N I Task(2) Task (2)
L L subroutine library
S L7 J — T ST™ ST™
= - E a H|erarcg_)=/_l(‘|2.1) Hlerarg?lfnl(z.Z)
C
Device register C
STM C
C

Figure 12- 2 Departments under RTOS
In general, when the RTOS is installed, the interrupt handler and device driver are placed under
RTOS control or manipulated by each manager layer of the RTOS. The basic STM mechanism is
the control of calling and returning of functions. A CASE tool that simulates the state-transition
matrix is required to support the operations of the following: call of the RTOS or manager layer,
interrupt handler and device driver, return-operation control and system-call operation for each
RTOS. This document does not cover these operations; it only defines the description method of

the state transfer matrix.

103

(DDepartment

12.3. Main/Task STM
The main STM and task STM are declared as follows:
(return-value type) (driven type) STM name (humber of clones) (argument)
(1) ltems in parentheses () can be omitted.
(2) Driven type:[l(event-driven or event hierarchy)
M (state-driven or state hierarchy)
(3) STM name: A number starting with 0 when a hierarchy exists.
(4) Number of clones: Write the number of clones in [].
Clones cannot be used in the state hierarchy.
Declaration example:int Clsample[2](char *Ipstatl, int icode)
Call example[11.1[0]:0(Ip1,p2,p3)

STM main Event analyzer STM (drive section)
E:tnt—obtain function
EvEnt-analyzer function call
Cgn pass arguments
Evept analyzer >
Activity
Action
turn Transitior
eturn @an return a return value
an return a return value
In4nail obtain function
In-mail analyzer call
Can pass arguments 1
-mail analyzer
g
Activity
\ction
turn Irransition
eturn @an return a return value
HCan return a return value

Figure 12- 3 Sequence diagram for main/task STM

[1: Refer to 13, "Clone STM," for the clone.
Refer to 14, "STM Main," for the STM main.

104

(DDepartment

12.4. Library STM
The library STM is declared as follows:
(return-value type) (driven type) STM name (humber of clones) (argument)
(1) ltems in parentheses () can be omitted.
(2) Driven type: O(Event-driven or event hierarchy)
@ (State-driven or state hierarchy)
(3) STM name: A number starting with 0 when a hierarchy exists.
(4) Number of clones: Write the number of clones in [].
Clones cannot be used in the state hierarchy.
Declaration example: ©100
Call example: func(lparal,para?)
0O100:func(lparal,para2)

Caller function Function Event STM
call analyzer drive
Funhction-call event > seFtion
Fvent numbe
Actﬁity, action, transition
return
Event oﬂain

Fvent-analyzer call
Evnt analyzer

Activity,’&ction, transition

return
urn M
vent obtain
Event-agalyzer call

Event analyzer

iret

Acmity, action, transition

ngturn

4’ eturn

Figure 12- 4 Library STM operation sequence

The control is not returned to the caller STM unless "zret" is executed, because the library STM is

105

(DDepartment

called as a function from the caller. The middleware STM" in Figure 12-5 is used as an example for
the explanation.

UNUSED INITIALIZED COMPRESS] CON,\?PRL“Q’T*ILON CONTINUEI %BQELF\I’E'\TA%LN’

0 1 P =
woid
jpegz_Compressinit o= 1 1 1 1
(JPEGINFD* <lnfo) 'r"lt{) init init .

pret Fret () Fret () et ()

E_: Ilong 5 5
D Jpeg_Compress 1
nI| CIPEGINFO* clnfo Compress Compres s
EEJPEG_OK , 2
¥ et (JPEG_OK)
' [PEG_CONT 4
if 3 - et (JPEG_COLNT)
'\ UPEG_ERR .
¥ 4 ret (JPEG_ERR)

Figure 12- 5 Middleware STM

initial JPEG decompress library /
jpeg_Compresslnit(& (dinfo));
Iget buffer processing ~ ¥/
getBuff(& (jpegBuff[0]));
begin JPEG decompression */
for(;;){
err = jpeg_Compress(& (dInfo));
if(err == JPEG_CONT){
update buffer processing */
getBuff(& (jpegBuff[0]));
continue;
}
elseif(err == JPEG_OK){
normal completion */
break;
}elsef
abnormal completion */
break;

}
Figure 12- 6 Middleware call

When jpeg_Compressinit() is called, the control is transferred to the STM and is not returned to
the caller until "zret" is executed. When jpeg_Compress() is called, the control is not returned to

1 NEC: uSAP703000-B0O3JPEG middleware (tentative)

106

(DDepartment

the caller until the library STM executes "zret()" in response to JPEG_OK, JPEG_ERR or
JPEG_CONT. During this period, the event analyzer of the library STM is being processed.

The execution method for this event O(E-type) or @(S-type)) is declared in the called library
STM. All of the P, C and M types can be used for the event type. Care should be taken when
the M type is used, since the same message queue as the one used by the caller is used for the
functions of the RTOS message mechanism. Normally, the P type is used for the event type of
the library STM.

The analyzer can be executed using the arguments passed upon the function call as conditions.

init in out
0 1 2
TIO_CI:
TIO LI 0
short Tioco | 4

req_io(UW iodvn, o :
T REQIO *pk rgig)| PSaio->ofm| TIO_LO:

default:

short req_io(UW iodvn, TREQIO *pk_rqio){
int ev_no;
switch(pk_rgio->iofn){
caeTIO_Cl:
caeTIO LI:
ev_no=0;
break;
caseTIO
ev_no=1;
break;
default:
ev_no=2;
break;

Reference: Tsubota, Hideo: TRONWARE Vol. 5: a}:t(e/_no)

An example using the OS of the HiTRON }
specification - Device Driver

Figure 12- 7 Function call arguments 2

2 Reference: Tsubota, Hideo, “TRONWARE Vol.5: An example using the OS of the piTRON
specification - Device Driver —*

107

(DDepartment

Let's take a closer look at the operations of the library STM.

[int A(struct c* pcl)

[int B(char cl, inti2)

EventX

EventY

Figure xx is used as an example. The operations in this case are shown in Figure xx.

—p| [int A(struct c* pcl)

—pf{ [int B(char c1, int i2)

EventX

EventY

The library STM is called by the function-call event (®). If zret() does not exist, it enters a loop
that waits for an event (®). Now there is an issue of how to pass the arguments upon entry to
this loop. Functions A and B have different numbers and types of arguments. The arguments
are declared using the frame upon entering the loop, as shown in Figure xx.

108

) pcl->m1,NULL

[int A(struct c* pcl)

[int B(char cl/inti2)
cl,i2
EventX f(ca,ib)
® char ca
intib EventY

(DDepartment

® is the declaration of arguments for the function comprising the loop, while ®and @ are the

declarations of the arguments to be passed. With this method the arguments can be passed to
the function @ described in the action cell.

—p| [int A(struct c* pcl)

@ pcl->m1,NULL

—p| [int B(char c1, int i2)

cl,i2 |
EventX f(ca,ib)
@) char ca
int ib EventY zret(x)

The control returns to the caller when "zret" is executed at [An int-type value is returned in
this case, since the return values from functions A and B are the same type. A problem occurs
when the types of return values are different between functions A and B. In such cases, the

difference of return values should be solved through the use of different frames.

109

(DDepartment

[void A(struct c* pcl)
EventX zret()
EventY

[int B(char cl, inti2)
EventX zret(x)
EventY

The type of return value from zret() can be altered by adding a frame for each return-value type.
The argument declaration can be omitted by adding frames. In this case, the function-event
argument (@) is passed to the loop function (@).

To avoid wasting the CPU with the loop, RTOS system calls waiting for events can be written as
event-analyzer start activities in ® and @ so that polling is not used and the CPU can be used
efficiently.

110

(DDepartment

12.5. Device-driver STM

The device-driver STM is declared the same way as the library STM.
Declaration example: O100[3](char* cpdata)
Call example: read(lparal,para?)

0O100:read(lparal,para?)
The existence of an RTOS mechanism is assumed for the operation of a device-driver STM.
When the RTOS is not installed, the device-driver STM is not used but the interrupt-handler
STM is used instead.

Device [«—/ Interrupt

linterrupt 7
Task (Handler 1 Driver Handler
(TRAP)o —_ (0
C Interface

Figure 12- 8 Positioning of device-driver STM

The device-driver STM has exactly the same description format as the library STM mentioned
earlier. In most cases, however, the operations of the actual device driver and library are
different. Moreover, the operation varies depending on the implemented RTOS type. However,
when a device driver is designed using the state-transition matrix, it is no different from creating
a library or task. The device driver is called from the higher-level application by a system call
(also called an 10 system call or a driver system call). This can be considered a function-call
event or message event. Or, if the system call is an internal interrupt such as a TRAP, there is
no problem in considering it an interrupt event and proceeding with the design.

The notes explained hereinafter are for creating a simulator tool that supports this methodology.
For actual simulations, the philosophy will change depending on which RTOS is simulated. A
library STM is a task from the RTOS's viewpoint. A device-driver STM is controlled by the
RTOS, separate from the task. System calls from a task to a device driver are forwarded to the
device driver as software interrupts (TRAP). If the call is asynchronous (calling return), the
device driver returns the control to the task as soon as it receives the command. Ifitis
synchronous (complete return), the called task stays in the 10 wait state until the device driver
completes the processing, and the task does not operate until the device driver completes the
processing. This is caused not by the STM operation but the RTOS operation. The device

111

(DDepartment

driver does not return to the task that has called it. The relationship between them is not the

simple call and return of a program, but the device driver is called from the task via RTOS and

the control is returned. With this method, the RTOS can even give priority to the execution of

another task. Here, zretset() is tentatively provided to express the intention of returning control

to the RTOS. From the state-transition design viewpoint, there is no problem whether writing

the zretset() function or writing codes that returns to the device driver of the RTOS to be used.
Whether the code is understood or not depends on the specification of the CASE tool that
supports the EHSTM.

112

Figure 12- 10 Driver call

Figure 12- 9
INITIALIZATION NORMAL ABNORMAL
UNUSED INITIALIZED | ~“compLETE READ COMPLETION _| COMPLETION
0] 1 2 3 4 B
imit(); imit; init(); init(); init();
: Fe tskid= zretset(nitializi PoL = Initializi a i
i int DE:;_I nit) ol clnfo—rtskid: clrfo—rtskid, cln'lrrgllel'l'ﬁglglu; cln'f'lgﬂlgbzzsmgm; Cln'FIl;”_“/a'égIn(glﬂ: c n'Ilﬂmil“LZ:I.rJ\g:u,
DEVINFO* cinfo isus_teheCectian | GALL ERRD: [isus_tekCtskid) | isus_tskCeskid): | isus_tskCtekid): |isus_tskCtskid)
ZsHnializing Simweien | IS | SATMAESE | STIM(ET
readl)
int Dev read zretset(zretset(zretset(zretset(zretset(zretset(
(i } 1| cinfo->tskid, |clnfo-rtskid, | eolnfo->tskid, clnfo—rtskid, clnfo-rtskid, clnfo-rtskid,
JPEGINFO* clnfo colL_ERRY ; [nuazaton E:.l'l.LL_DKJh; ColL ERRD ; CALL_ERR ; CALL_ERR) ;
= —
V zretzat(
“Aphoiral
IMIT_OK |2 £ | pcompletion £ £ F £
i rsm_‘tsk E-tik id Normal completion
=iHAEET ’
zretset(Apnormal
tzhid, completion
INIT_ERR £ INIT_ERRY ; £ i / £
i ram_tsk (t=kid)
DEY_| [=tat R
WE=READ_OK;
READ _0k I ! ! isnd_m=g (ME1) I /!
S
ME=READ_ERR
FEAD_ERE I ! ! isnd_m=g (ME1) I /!
| SRR T
s = DevRead(&dInfo);
if(s == READ_OK){
}
else{
}
}

(DDepartment

The operation upon calling Dev_Init is basically the same as that of the library-call STM. In
other words, it is a synchronized (complete return) type. The synchronized type here means
that the control is not returned to the caller until processing finishes completely. Not returning
the control to the caller means to make the caller task WAIT, since the device driver STM uses
the RTOS mechanism.

Dev_Init() becomes a TRAP command in C Inter, and is caught by the interrupt handler. The
interrupt handler that receives this system call (Dev_init) saves the PC and SP of the task at the
time the system call is issued, to the TCB of the task. It then notifies the device driver of the
request from the task.

If the device driver that has received the request as a function-call event is an RTOS, which has
to process the execution control of request tasks, describe the processing in the action or
activity of the device-driver STM.

For iTRON?, the request task is transferred to the forced wait state by isus_tsk(tskid). In order
to resume the task in a forced wait, stateirsm_tsk(tskid) is issued. In the case of the RTOS’ that
does not support isus_tsk(), the event flag is executed using wait_flag(flgid) on the request-task
side, and is set within the device driver using iset_flag(flgid).

The request task needs to obtain the task ID using get_tid(p_tskid) and pass it to the device
driver as an argument.

3 iITRON for NEC-made V850 (RX850) is used as an example.
4 iITRON for NEC-made 78K/IV (RX78K/IV), etc.

113

(DDepartment

Request task

Device driver

Interrupt handler

In the device-driver STM example, DEV _I is set as an interrupt. This causes the creation of
another loop that waits for an interrupt in addition to the interrupt handler. The device-driver
STM transfers control to the created loop. The CPU resource, which would be used for the loop
that just waits, can be saved by describing the RTOS synchronized event flag WAI_FLG(EV1) in

Dev_lInit
TCB
_Dev_Init \
Return
Isus_tsk L address
.............................. retum <
... — Value —_—
dspecher =
DEV_LINIT_OK
irsm_tsk
zretset(INIT_OK)
dispacher

Figure 12- 11 Synchronous device driver sequence

the cell. To return the execution privilege to the request task after the device driver has

received the specific end interrupt, zretset(ret_value) is called. This command sets the return
value (ret_value) from the device driver to the TCB of the request task and switches the 10 wait

state held by the request task back to READY.
Scheduling then sends a request to the RTOS.

114

(DDepartment

Request task (m iTRON Interrupt handler
_/

Dev_Read

TCB

_Dev_Read y
Return
zretset(CALL_OK address

Y

Return
dispatcher value

Figure 12- 12 Asynchronous device driver sequence

Dev_Read() is an asynchronous (calling return) type. The asynchronous type immediately
returns the control to the caller after receiving the system call, even if processing has not been
completed. Naturally, returning the control means making a request to the RTOS scheduler, so
whether the control is actually returned or not depends on the circumstances of the task
controlled by the RTOS at that time.

In the case of an asynchronous task, it will not know whether the read has been completed until
a response has been received. Write it as the following in order to receive the response as a
message:

rcv_msg(MB1);

The device-driver STM is a loop process that waits for an interrupt, since it is independent from
tasks. Interrupt is disabled while the device-driver STM is in operation.

(*)zretset() is not a system call of EHSTM. The system call equivalent of zretset() depends

on the specifications for the CASE tool that supports the EHSTM, because it varies
depending on the RTOS type supported by the tool.

115

(DDepartment

12.6. Interrupt-handler STM

The interrupt-handler STM is declared as follows:
STM name

Declaration example: Dev_1

Call example: Registered to the interrupt vector table

The interrupt-handler STM is designed so that an interrupt handler exists for each of the
interrupt events and the handler is registered to the interrupt vector table of the CPU. The
EHSTM design method does not cover such issues as the interrupt vector table, which must be
shared because some CPUs have fewer interrupt vector table entries. In some RTOSs, the
RTOS interrupt handler catches the interrupt first, then the individual interrupt handler is
activated from the interrupt table provided within the RTOS. However, for its return, a
mechanism similar to the one for the device-driver STM, such as zretset(), is necessary in the
CASE tool.

In some cases, the STM exists as the interrupt-handler section. In other cases, the interrupt
handler section is dispersed to the task STM or main STM. From the viewpoint of
implementation, there are no problems in describing the interrupt handler (interrupt event) in the
main section. If the interrupt handler is written in the task section, it is necessary to adjust it to
the interrupt-handler mechanism of the implemented RTOS. When the interrupt-handler section
(interrupt event) is described in the task section, it means "the task is always activated at the
moment an interrupt occurs.”

If the interrupt handler is created independently, the task or main section has to be notified of
the occurrence of an interrupt. Normally, the task section uses an independent interrupt-handler

section.
=
EventA |0
EventB |! v Ll
EventC |2 —p |mterrupt o B =
= A4 T
Event A |0
p| Interrupt |5
" A 4 Interrupt |1 EventB |1
B 4 —

Interrupt |4 F EventC |2

B 4 Interrupt |2
IF C
Interrupt g 4“

c 4

Main STM Interrupt-handler STM Task STM

Figure 12- 13 Interrupt-handler section

LJ:EHSTM Refer to 17, "EHSTM system call," for more about the EHSTM system call.

116

(DDepartment

12.7. Device-register STM
The device-driver STM is declared the same way as the library STM.
Declaration example:[1100[3](char* cpdata)
Call examples: read(lparal,para?)

[1100: read(lparal,para?)
During a system simulation the device-register STM is processed concurrently with the CPU,
since it exists in the external environment.
If the RTOS is implemented, a device-driver STM is usually created, so it is not necessary to
pay attention to the operation of the device itself. However, it is convenient to have the device's
operations described in the form of an STM when the RTOS is not implemented, or for
designers of device driver STMs or 10 library (middleware) STMs.
Usually, communication with peripheral devices is performed via the command/status registers.

i , L TXINT 7]
CPU I RuNT device device N 4 cru

I~ TXINT

CMDREG CMDREG
TXDATREG TXDATREG
RXDATREG | RXDATREG H |«—— — > RXDATREG T | RXDATREG

STAREG H |« > STAREG T
HOST TERMINAL

Figure 12- 14 An example of communication devices

Let's consider the example in Figure 12-14. There is a device COM, which is for
communication. The CPU has access to CMDREG, TXDATREG, RXDATREG, and
STAREG_H/T of COM. On the other hand, RXDATAREG_H/T cannot be accessed from the
CPU. There must be another end, since it is a communication device. Assuming the other end
also uses the same device, TXSATARREG - RXSATAREG_H/T and STATEREG H -
STATEREG _T are connected between devices. The connection here means to create an STM
so that the registers of the other end can be referred to and set from both sides (HOST and
TERMINAL).

117

(DDepartment

TX RX
ZEL_500
ComLSl| RUN
STOP STOP RUN
b4800 b9600 19200
0 1 2 3 4 5
4800 | 0 | =>b4800 =>b4800 =>b4800
Eﬁnﬁ;‘f‘j ced) ispeed| 9600 | , | =>b9600 =>b9600 =>b9600
19200 2 | =>b19200 =>b19200 =>b19200
CMDREG | TXSTART zsystim(T_O, zsystim(T_O, zsystim(T_O,
[* activity*/ 3 E>TX:RUN(P 1666); 833); 416);
CMDREG &= TXCLR; iflag=OFF; iflag=OFF; iflag=OFF;
CMDREG | TXSTOP zsystim(T_O, zsystim(T_O, zsystim(T_O,
I* activity*/ 4 0); 0); 0);
CMDREG &= TXCLR; =>STOP =>STOP =>STOP
CMDREG | RXSTART
I* activity*/ 5 =>RX:RUN
CMDREG &= RXCLR;
CMDREG | RXSTOP
[*activity*/ =>RX:STOP
CMDREG &= RXCLR;
STAREG_T == ON RXDATREG =
[* activity*/ RXDATREG_T;
STAREG T = OFF; INT(RxINT);
if(iflag==ON){ | if(iflag==ON){ | if(iflag==ON){
RXDATREG H | RXDATREG H | RXDATREG_H
=TXDATREG; | =TXDATREG; | = TXDATREG;
STAREG_H STAREG_H STAREG_H
/*Tx TimeOut */ =ON; =ON; =ON;
TO } } }
elsg(elsg(elsg(
iflag = ON; iflag = ON; iflag = ON;
} } }
INT(TXINT); INT(TXINT); INT(TXINT);

Figure 12- 15 Communication device register STM

According to the states, the transmission and reception (TX/RX) can operate concurrently in the
COM. Unless setspeed() is executed, the transmission is not allowed. Event numbers 3
through 7 sense the CMDREG value as a flag event. If an arbitrary bit of the command register
is on, the arbitrary processing is executed, and the bit is cleared by the event end activity when
it is complete. Once the baud rate is set, it is not changed unless changed by setspeed(). This
is known from the fact that the type of the transition from state number 1 by event number 3 is
the deep history type. In order for COM to start transmission, it is also known from the matrix
(state numbers 1 through 3 of event number 3) that the CPU side has to turn on the TXSTART
bit of the CMDREG to on again and trigger an interrupt (zsystim) for transmission within the
COM. The zsystim interrupt intervals are changed, depending on the baud-rate setting. When
the first T_O (event number 8) interrupt occurs, it simply interrupts the CPU with an INT (TXINT),
because the iflag is set to off. The CPU needs to set the transmission data to TXDATREG
before the next interrupt is generated for the COM. The COM sets the EXDATREG value to the
receive register RXDATREG_H of the opposite party (when its own side is the terminal side).
Obviously, this is repeated as long as the transmission data exists. At the end of the

118

(DDepartment

transmission, the TXSTOP bit has to be turned on in the CMDREG before the COM's internal
transmission interrupt occurs.

The reception operation runs concurrently with the transmission operation. Reception will be on
standby by turning on the RXSTART bit of CMDREG from the CPU. Then, when STAREG_T
(when its own side is the terminal side) is turned ON, RXDATREG_T (when its own side is the
terminal side) containing the value set by the opposite party is set in RXDATREG, and the
reception interrupt INT (RxINT) is generated in the CPU. You can tell that the CPU side must
read the value in RXDATREG before the next reception from COM occurs.

119

(DDepartment

120

® Clone STM

13. Clone STM

The clone STM generates multiple states from a single STM. “Multiple states” does not mean
multiple concurrent states, but providing multiple sets of states to be controlled by the state
scheduler.

The clone STM is declared as an array of the C programming language.
Declaration example:

int 1[3](Ip1)
The meaning of the above declaration is, "The return value type is int; there are three clones for
number 1 of the event driven STM; and receives argument Ip1." To be precise, "three clones”
means "one original and two clones.” Clones are called by specifying the clone number. The
clone number starts with 0. Clone number 0 is used to call the original. When the clone
number is omitted, O is assumed.

Call example:
(11[0](&varl)
E_ ______ TELEPHONE """'E"_"_"_"__""-l:__/"""""""""'
2] ON
DISCONNECTE ON THE PHONE OFF
P NORMAL|MUTE
i 1 2 2 4
1
1 Message for - R
g o[o / / / s
phone call 5 ,
Voice from the
other party 1 X State}igign ,fps sage 4 Mute -
Busy tone 0
x Hang up e v A
g
Interested 32 e e Turn TV e v
End of = =
nd of program |4 e e w T TV off S

Figure 13- 1 The STM of the telephone and TV

When the STM of the telephone and TV declares the number of clone STMs as two, two sets of

state-control variables are used.

121

@® Clone STM

State-control variable for Clone STM NO:0

H[Telephone]

m[TV]

L
L

H[Disconnected]
H[On the phone]

State-control variable foe Clone STM NO:1

H[Telephone]

L
L

W[TV]

[1:Dead M:Suspended:OReady: ®@Active

The clone STM can be used in all departments. The creation of clone STMs with respect to a
task section does not produce multiple tasks. The same thing can be said of the device driver
and library sections. Be especially careful with the device driver, since the device driver
mechanism of the RTOS may be conducting the unit control. To realize exclusive control for
clone STMs, the user must describe the contents in the action or activity. The EHSTM design

H[OFF]

H[ON] E[NORMAL]
E[MUTE]

M[Disconnected]

H[On the phone]

H[OFF]

H[ON] E E[NORMAL]
E[MUTE]

method only provides the clone STM mechanism.

The clone STM is convenient when a communication-control protocol task controls channels or

multiple partner stations by a single protocol.

The clone STM cannot use interrupt events.

122

® STM main

14. STM main

An STM main is created for each main section and each task in the task section. The STM
main calls the event-acquisition function and event-analyzer function. However, there is none in
the library, device driver or interrupt-handler section. In these departments, the event-
acquisition and event-analyzer functions are called within the functions generated by the
function-call type or interrupt-type STM.

The STM main is closely related to the driven type.

14.1. STM main and event-driven type
The event-driven type has a program structure that waits for events at a single location.
Therefore, the STM main acquires events and calls the event analyzer.

STM main

while(1){
The event-
acquisition function
The event-analyzer
}Hunction

The event-acquisition function

Acquire communication and
synchronized events

The event-analyzer function

Detect the event number
Drive the STM

Figure 14- 1 STM main and event-driven type

123

& STM main

14.2. STM main and state-driven type

The state-driven type has a structure that retrieves events at multiple locations in the program.
Normally, polling-type events are used for the state-driven type. However, when the
communication or synchronized type is used by the state-driven STM, events are acquired at a
single location of the STM main by default. It is called “default” here because the tools that
support the EHSTM design method will be likely to have specifications that allow selection from
several event-acquisition locations. When polling is set as the event type, the event-acquisition
function does not work. In the state-driven type, the state scheduler is called instead of the
event-analyzer function from the STM main.

STM main

while(1){

The event-acquisition
function

State scheduler

}

The event-acquisition
function

Acquire communication and
synchronized events

State scheduler

An active event-analyzer function

The event-analyzer
function

Detect the event number
Drive the STM

Figure 14- 2 STM main and state-driven type

124

® Hierarchy

15. Hierarchy

The hierarchy describes the overview in the higher level and in more detail as the level
becomes lower. Using the hierarchy a huge, complicated state transition can be represented in
a compact, easy-to-understand structure. Normally, when the state transition is represented
graphically -- in other words, in the case of the State Transition Diagram (STD) -- the hierarchy
is implemented with respect to states. Harel's STD is the example. When the state transition is
represented as a table -- in other words, in the case of the State Transition Matrix (STM) -- the
hierarchy is implemented with respect to events. The EHSTM design method version 1 uses
this method.

In the EHSTM design method version 2, the state hierarchy is included in the STM in addition to
the event hierarchy.

[L): Refer to 11, "Driven type," for the STM driven type.

15.1. Event hierarchy

In the event hierarchy, an overview event is captured in the higher-level STM, the higher-level
STM notifies the lower-level STM of the event, and the lower-level STM captures it as a detailed
event. Overview-detail relationships are constructed with respect to events, allowing the
construction of a complicated large-scale system using compact, easy-to-understand STMs.
Let's take a look at an example of hierarchy for the telephone STM. We assume it is an event-
driven STM.

Sound information

01 Disconnected | On the phone
[i
X 1
Message for 0] O1.1 On the phone
making a phone -] | Dial h +
0 Voice from 0 State the
the other message
Sound 1 party Hang up
information 0.1 : 1
|i Busy tone Hung up

Figure 15- 1 Event hierarchy(1)

The “sound information” event and the “voice from the other party” and “busy tone” events have
a hierarchical relationship.
“Sound information” |: “Voice from the other party”
“Busy tone”

Figure 15- 2 Event tree

This event tree structure can also be represented using the event virtual frame without using the
hierarchy, and the user can choose the format to be used. Description in a single STM has the
benefit of being able to confirm all combinations. The hierarchical structure has the benefits of
reducing the number of “no use” and “invalid” cells, improving the ease of viewing and editing,
and reducing the memory required when the STM is programmed in a table. (Usually, the total
number of cells is reduced with the use of hierarchy, even though it is still six after implementing
a hierarchy in the above example.)

125

® Hierarchy

Disconnected

On the phone

[1
Message for making a 1
U b
phone call 1
- 1]
Voice from the State the
Sound message
A u . other party Hang up
information
0
Busy tone
Y 2 Hung up

Figure 15- 3 Event virtual frame

Let's take a look at another example of event hierarchy.

This is an STM that controls two drives (A and B).

126

Figure 15- 4 Event hierarchy(2)

0 AR W | O - N
tree busy free buay
1 2 2 4
o -
"
trost Im busy ret
reuest 4 -
i':l -
Z V/ZW 7 busy ret
1
3
dewice host req
return / 3
4 host reg
01 Ready
1
N Read
Write
—»
Seek
—»
> GetlD
RetrunToZero
Format
—>

® Hierarchy

The parent STM(0) receives the "host request" by the event virtual frame, and "A:" and "B:" are
treated as events. When the parent STM (0) is in the "free" state, the child STM (0.1) is called

by inheriting the event received by the parent. The child STM classifies the event received by

the parent STM into six detailed events.

The event hierarchy is represented using the STD, as follows:

A B
free | hostrequest A/ busy free | hostrequest B/ busy
[]0.1 []0.1
> >
< device return A/ 4device return B/
host_req host_req

Figure 15- 5 Event hierarchy STD
The child STM in this case can also be written as a subroutine STM.

15.1.1. Call and return of event hierarchy

In the event hierarchy, the higher-level STM always receives events and passes these events
on to the lower-level STM. The lower-level STM cannot receive events independently. If the
parent cannot know all events of the child STM, it uses an "else" event.

L

0.1 0.2

0.1.1

Figure 15- 6 Event hierarchy tree
The call of another event hierarchy is executed in the action cell. Therefore, an event-hierarchy

STM can be called by passing arguments in the same way as a function call, and the called
event-hierarchy STM can return with a value.

127

® Hierarchy

1 State A

if(CJ1.1(Ipara)){ <

Hi{ normal processing
=> normal state

Event A

else{
/labnormal processing
=>abnormal state

}
int O1.1(zhar #* lpara) State A
return KTRUE!
]
|:| FI.II'IG [|[|:|:I r:j .
. O1.1.1llpara
L » |EventA-l lpara == TRUE return (TRUED
1 s
elze
Event A-2 o O1.1. 10 lpara)
return (FALSED

Figure 15- 7 Call and return of vent hierarchy

"Event A" is inherited from [11 to [11.1 as "Event A-1" and "Event A-2," and "Ipara" is handed
over when [J1.1 is called. A "return" statement is executed when returning from [11.1 to [11.
The return statement described in the STM declaration section is executed when no event hit
has occurred.

The lower event number is determined by the higher-level STM, and the lower-level STM can

be driven by the event number specified in the higher-level STM without executing the event
analyzer of the lower level.

128

® Hierarchy

01
—p if(01. ara)){4
/Inorm cessing
=>normfl state
Event A }
else{
//abnorrl]a}ll processing
=>abnogmal state
}
int O1.1(zhar #* lpara) State A
return LTRUE!
]
|:| FI.II'IG [|[|:|:| r:j :l
__ O1.1. 10 lpara
p Event A-1 lpara == TRUE return [TEUE:'
alze 1 4
EventA-2 o E1.1.1[|p=r=)
> return [FALGED

The child event ([11.1) will be event number 2 ("Event A-2"), which is specified by the parent.
Event A is passed onto the grandchild [11.1.1).

Figure 15- 8 Event number specification call

[: Refer to 4.4.10, "Event virtual frame," for the event virtual frame.
Refer to 16, "Subroutine STM," for the subroutine STM.

Refer to 4.4.9, "ELSE event," for the else event.
Refer to 9, "Event analyzer," for the event analyzer.

129

® Hierarchy

15.2. State hierarchy
In the state hierarchy an overview state is captured in the higher-level STM, while detailed
states are captured in the lower-level STM. Overview-detail relationships are constructed with
respect to states, which allows the construction of a complicated large-scale system using
compact, easy-to-understand STMs.
Let's take a look at a hierarchical STM for the telephone example. We assume it is an event-

driven STM.
B Telephone: :_ _fﬁ,r_ A
' W11 W2
il 1
Bl Disconnected | On the phone

cal

making a phone
|

Message for 1

Busy tone

Voice from the
other partv

[i
U b
1]
1 State the
message
Hano .on,
1]
Hung up

1.2 in Figure 15-9 can set in a hierarchy with a deeper level.

m.z o

OFF

MORMA L PUTE
[l 1 2]

Voice from MUTE
the other d Mute 4

DN DD
Interested
program [Turn TV on £ s

End of . O FF o FF

proaram Tiien T\ nff Tiien TV nff

Figure 15- 9 State hierarchy transition matrix (1)

miz OFF .102 1
[1
Interested 0 QN LD
- Turn TV on .
proaram
End of COFF
program i Turn TV off

Figure 15- 10 State hierarchy transition matrix (2)

Compared with the 5x5=25 cells in the STM shown in Section 5.2 before implementing the
hierarchy (Figure 15-10), the number of cells has been reduced to 2x0+2x3+3x3=15 in the
state-hierarchy STM(1) and to 2x0+2x3+2x2+1x2=12 in the state-hierarchy STM(2). The
decision whether or not to use state hierarchy is determined in the same manner as the event
hierarchy. The state tree will be as below:

[Telephone] I:
[TV] [OFF]
[fony

130

[Disconnected]
[On the phone]

C

[MUTE]

[NORMAL]

Figure 15- 11 State tree

® Hierarchy

The following.are. the STDs for.the STMs.in.Figures.15:9.and.15:-10

Busy tone/Hung up

Telephone
Voice from the other party/State the message, Hung up
Disconnected p| On the phone

Message for making a phone call/Dial

End of program/Turn TV off

TV
End of program/Turn TV off

ON
v l i
Interested program/Turn TV on > Voice from the git er party!
OFF /Mute NORMAL MUTE

Figure 15- 12 State hierarchy STD (1)

The state hierarchy for those STMs is expressed the same way by the STD. In the STD for TV
activity in Figure 15-12, when the transition from "ON" to "OFF" is written as shown in Figure 15-
13, the STM uses the state actual frame as shown in Figure 15-14.

131

® Hierarchy

End of program/Turn TV off

Figure 15- 14 State actual frame (3)

[1: Refer to 5.3.6, "State actual frame," for the state actual frame.

132

ON
Interested program/Turn TV on, Voice from the other party
OFF NORMAL > MUTE
/Mute
Figure 15- 13 State hierarchy STD (2)
(o
OFF
MORMAL MUTE

i [i 2 o
et | || e |
[d
posn | Samr | / ,
End of 2 Turn TV off:
program H =0 F F

® Hierarchy

15.2.1. Call and return of state hierarchy

The call of a state-hierarchy STM is different from the call of an event-hierarchy STM. The state-
hierarchy STM does not make a call at the interval at which an event occurs. A call is executed
when a transition occurs and the state becomes active. Whether the called state-hierarchy STM
inherits the event from the parent or acquires a new event by itself depends on the STM driven
type. While the event-hierarchy STM is called and returns as if it was a function, there are no
arguments or return values for the state-hierarchy STM because it is called as part of an active
state.

L= [
1.1 1.2 {::.{:}

1.1.1 {3:.{:}

1.1.1 .::::.;‘Z‘:}

Figure 15- 15 Call and return of state hierarchy

—————— A= === =9

i Telephonefi T
1 | !

[l '1‘- 1

/\

Hi1 Disconnected |On the phone
oroner e P ey Wz OF F =
[l] mi. 2. 1
Message for i M 1
makinga |o .
phone call Dial Interested QN D)
rogram Turn TV on d
Voice from the o prog
other party 1 rSntg;i;Bg End of 1 , OFF
Ha’}?& I program Turn TV off
Busy tone |2 Hung up_]
mi. 2.1 NORMAL MUTE
[l 1
Voice from the other MUTE
party Mute s

Figure 15- 16 State hierarchy STM (3)

Let's trace the actions in Figure 15-16. Assume the STM is a state-driven type. It is easier to
understand if the state tree is used as a reference.

The first ready states are "Telephone” and "TV." "Disconnected" and "OFF," which are their
respective child states, are in the READY state.

133

® Hierarchy

O[Telephone] Ol[Disconnected]
|: [On the phone]
o[1v] O[OFF]
[[oN] [INORMAL]
[MUTE] OReady: @Active

Figure 15- 17 State hierarchy scheduling (1)

Only one of the ready states becomes active. The active state is switched via a dispatch. Two
specifications are available for scheduling of the dispatch:

(1) Vertical scheduling (V-type)

(2) Horizontal scheduling (H-type)

In concurrent states, two specifications are available for determining the priority:
(1) Default scheduling (D-type)
(2) Dispatch scheduling (P-type)

These scheduling types will be explained in the "STM driven type” section.

O [Telephone] @ [Disconnected]
[[On the phone]
O [TV] [O [OFF]
[ON] [[NORMAL]
[MUTE] OReady: @Active

Figure 15- 18 State hierarchy scheduling (2)

Being active means that the event is accepted. Assume an "interested program" event occurs
when the "Disconnected"” state is active. This event is not known until the "OFF" state becomes
active. This is characteristic of the state-driven type. If it is event-driven, the root STM is first
initiated at the moment the event occurs, then each STM is called. In the state-driven type,
whether or not the event has occurred is not known until the state becomes active because the
active state looks for the occurrence of an event. Therefore, using the synchronized or
communication-event type in the state-driven type will cause problems. This ia explained in the
“STM driven type” section.

O [Telephone] [O [Disconnected]
[On the phone]
O [TV] I: ® [OFF]
[ON] [NORMAL]
|: [MUTE] OReady: @Active

Figure 15- 19 State hierarchy scheduling (3)

134

® Hierarchy

When "OFF" becomes active and the "Interested program” event is captured, a transition to
"ON(D)" occurs.

O[Telephone] O [Disconnected]
|: [On the phone]

O[TVv] [[OFF]
[ON] [O [NORMAL]
[MUTE] OReady: @Active

Figure 15- 20 State hierarchy scheduling (4)

Assume a "Message for making a phone call"* event occurs when the "ON" state is active. The
occurrence of this event will not be known until the "Telephone" state becomes active.
O [Telephone] E [Disconnected]
O [On the phone]

O [TV] [[OFF]
O [ON] — @ [NORMAL]
— [MUTE] OReady: @Active

Figure 15- 21 State hierarchy scheduling (5)

Assume a "Voice from the other party" event occurs in the above state. This "Voice from the other
party" event is described so that it is processed in the "Telephone” and "TV" concurrent states.
Since they are designed as concurrent on the STM, they can be processed at the same time.
Unless an RTOS supporting multiple CPUs is installed, however, in reality one of them is
processed first. Which state should be processed first cannot be specified, but it is determined
depending on the dispatch situation. To specify that one of them always has processing priority,
the state hierarchy should not be used as in Figure 17 of Section 5.2, but the event-driven STM
should be used. By using the default scheduling for concurrent states, the "Voice from the other
party" event always accepts the "Telephone" state first in Table 17. Then the "State the message,
hang up" action is executed and the "Voice from the other party" is accepted in the "TV" state.
This is essentially the opposite of normal actions. In fact, a default mark (@) should be attached
to the "TV" state because "Mute" should be executed first. The order of event acceptance is
susceptible to change, due to the state scheduler. Even if a default mark is attached, this is only
for specifying the order of scheduling but not for specifying the order of events to be processed.
Therefore, nothing can be done further if a "Voice from the other party” event is detected while the
"Busy" state is active. The driven type should be the event-driven type if the orders of events are
important. Refer to Section 14.10 for more about this issue.

The "Voice from the other party" event is usually defined so that its occurrence made known by
the change of a variable. Moreover, the lifespan of the "Voice from the other party" event is one of
the most important items to design.

135

® Hierarchy

No voice from the other party
Voice from the other party

Figure 15- 22 Lifespan of an event

The occurrence of an event is captured by the event analyzer. The events are also cleared by the
event analyzer. At this time, in the case of a concurrent state of the state-driven type, the events
cannot be cleared by the analyzer independently because other states might also need it. In this
case, processing such as a synchronized counter will be necessary for the event analyzer.

[L): Refer to 11, "Driven type," for more about the STM-driven type. Refer to 8.3, "Dispatch

activity," for more about dispatch activity. Refer to 9, "Event analyzer,"” for more about the event
analyzer.

136

15.3. Hierarchy and event

® Hierarchy

Events are inherited for communication events, synchronized events and in-mail events.
Inheritance means that the child STM analyzes events acquired by the parent. In other words,
the event inheritance deals with the location in which the event is acquired; namely, whether it is
inherited or new events are handled. Normally, if the event-acquisition function is called from a
single location of the STM main, the events acquired there will be inherited by the children of
the event hierarchy. If the event acquisition is called from the state scheduler, events are not
inherited and newly acquired ones are always used.

Event acquisition

State scheduler

v

Evgnt analyzer

v

Event analyzer

State scheduler

Event acquisition

Event analyzer

Event analyzer ¢

vent analyzer

Figure 15- 23 Event inheritance

137

® Hierarchy

15.4. Hierarchy and state

There are two types of states: the exclusive type and concurrent type. The relationship of the
hierarchy with regard to state type is the same as that of the parent-and-child relationship of the
state frame.

ON ON
VISUAL
OFF |
iSW SW SW
) NAV| TV OFF
OFF F _‘
AUDIO
S\N/ SW SW| SW| SW|
5|ﬂ NAVI (+ TV t+ CD —RADIO — TAPE —‘

Figure 15- 24 Car audio STD

Assume a State Transition Diagram (STD) as shown in Figure 15-24. The state frame STM
for this diagram will be as shown in Figure 15-25:

0N
1 T To oo --------------=S
CooMISUAL AN :
OFF
NAW | TV [OFF [MaV] | TY | CD |RADID TAFE
el — —
0 1 G I = £ 1 7 =) o
(b Ol =»0N
oFF |1 = 0FF
_ _ _ _ _ _ =>A
SW 2 =3 |=4 =>8 [=»7|=>8| =>B mai | 15|
isw (I3 =2

Figure 15- 25 State frame STM for a car audio system

138

® Hierarchy

The state-hierarchy STM without a state frame is shown in Figure 15-26.

oN
ol il ﬁ I
[1

on Jo| =som
oFF |1 =30FF

o MIsUAL | Ao
CTR

nawl | Tv | oFF [wavi | v | oo |ReDio TAPE

[1 ? - A H 5 b

e L s e L _ =3 AV |
aw [o]=31v Evorr =>Tv =00 BRapio Tape | SN

Figure 15- 26 State-hierarchy STM for a car audio system
[: Refer to 5.3.2, "State frame," for more about the state frame.

15.5. Hierarchy and action

A call for a state-hierarchy STM cannot be written in the action. Event-hierarchy STMs include
the ones with hierarchical events and those with hierarchical actions. With hierarchical events,
the event type of the child STM in the hierarchy is the same as the parent that initiated the call.
With hierarchical actions, the timing of the call is after the parent receives the event, but the
event types could be different. The child could be a flag type while the parent is a message

type.

139

® Hierarchy

15.6. Hierarchy and transition

There are three types of transitions: the default type, history type and deep-history type. A local
transition is a transition within its own STM. A global transition is a transition to an STM of
another hierarchy within the same department. Transitions can be made to both the event
hierarchy and state hierarchy in the same manner. No transition is allowed beyond the
department. For example, a transition to the state in the library STM is not allowed from the
task STM.

When a hierarchy is used, the transition symbol “-* indicates that priority is given to the transition
within the child STM that has been called.

01 S1 S2
1 2
1
El |1 | 011
E2 |2 | 011
011 SA
1
EA |1]| 1>2/-

Figure 15- 27 Hierarchy and transition

When 1.1 is called by E1, the [11.1 has 1>2, causing a transition to 2 of the parent state [11.
When it returns to the parent, the parent makes a transition to state 1 because 1 is explicitly
specified.

When 1.1 is called by E1, the [11.1 has 1>2, causing a transition to 2 of the parent state [11.
When it returns to the parent, the parent stays in state 2 because "-" is specified.

15.7. Hierarchy and activity

There are four types of activities: the event activity, state activity, dispatch activity and trigger
activity. The event activity and state activity function in the same way for both the event
hierarchy and state hierarchy. The dispatch activity and trigger activity function only for the root
level. They do not exist in hierarchical STMs.

140

® Hierarchy

15.8. Hierarchy and event analyzer

Event analyzers are created for the number of hierarchical STMs in the case of event-driven
STMs. For state-driven STMs, an event analyzer is provided for each state.

There are two processes in the event analyzer: event retrieval and analysis of the retrieved
event. By default, the child uses the event retrieved by the parent for the communication type,
synchronized type and in-mail type, as described in Section 14.3. If there are any problems
because of this, they are solved by including the event retrieval process in the event analyzer.
In this case, the event inheritance will not be the same as the table shown in Section 14.3.

15.9. Hierarchy and state scheduler

The state scheduler determines the schedule for the parent-and-child relationship among
states. Since the event hierarchy and state hierarchy can coexist, the state scheduler functions
in either type of hierarchy.

15.10. Hierarchy and driven type

The driven type is specified for the highest-level STM. The driven type cannot be specified for
each hierarchical STM. The event-driven type has a structure that waits for events at a single
location in the highest-level (root) STM, even if there are multiple hierarchical STMs. The state-
driven type has a structure in which an event analyzer is provided for each hierarchy state, and
the active event analyzer is executed by the state scheduler. When the event-hierarchy STM is
called in the state-driven type, the called event-hierarchy STM is driven as the event-driven
type. This is because the event-hierarchy STM is described in the action and behaves like a
function. Conversely, when the parent calls a state-hierarchy STM in the event-driven type, the
called state-hierarchy STM is the event-driven type. This is because the state hierarchy is a
hierarchical state tree, and the crossed section of an event and one of the multiple ready states
is simply called. There is no event analyzer for each state.

Let's discuss the state-driven type using the phone call example in Figure 15-1.

141

® Hierarchy

[} Disconnected |On the phone
[1
[= e 1
Message for
makln%eﬁlphone I} Dial
I}
Sound 1
. . O1.1
information

011 On the phone
[
Voice from=f Statethe
the other 0 | message
party Hang up
Busy tone {1 Hung up

Figure 15- 28 State-driven telephone

Because the state is exclusive, the "Disconnected” state has been activated by the state
scheduler at the beginning. Because it is a state-driven type, the event analyzer prepared for
each state is called. In this example, the event analyzer is monitoring the occurrence of a
"Message for making a phone call." When a "Message for making a phone call" occurs, "Dial"
is executed and a transition to "Busy" occurs. The "Busy" state now becomes active and the
"Sound information” event is monitored. When a "Sound information” event occurs, the child
STM "01.1" is called by inheriting the "Sound information" event. The called event-hierarchy
STM of 1.1 is an event-driven type.

Next, let’s look at the example of the telephone and TV represented by the event-hierarchy STM

and state-hierarchy STM, to discuss the event-driven type.

()

Telephonel

|
A

=

/

142

. Disconnected'_On the phone |
[l 1
S IE) 1
Message for Ol - _
making a phone Dial
call
I}
Sound 1
information On the phone
J
0111 EeEh
[
Voice from State the
the other [O] message
party Hang up
Busy tone 11 Hung up

| OFF "B i
I
I Interested 0 ON (D]
Turn TV on
program
End of "
program Turn TV off
mi. 7. 1 MORMAL MUTE
[1
Voice from the other MU TE
party Mute d

Figure 15- 29 Event-driven telephone and TV

® Hierarchy

In this example there are no events in the root STM. Even though the event-driven type seems
to do nothing because it waits for events at the root, the event analyzers provided for each
state-hierarchy STM are activated because of the state hierarchy. The event analyzer to be
activated here requires that the parent calling be in the ready state. The event analyzer is not
provided for each state. Assume that the state scheduler is managing the state as follows:

O[Telephone] |: [Disconnected]
O[On the phone]
[On the phone]

o[1v] [OFF]
[O[ON] [O[NORMAL]
[MUTE] OReady: @Active

Figure 15- 30 State tree

The states of the event-hierarchy STM are not included in the tree by the state scheduler, but
are managed as states of the STM itself. The states of the event-driven type become active
only when the events are analyzed. The order of calling event analyzers follows the
specifications for the parent schedule, concurrent schedule and tree schedule by the state
scheduler. The states of the event-hierarchy STM are handled as states of the STM itself, and
are processed in the order of action execution in which the event-hierarchy STM call is
described.

Because it is event-driven, it waits for events at a single location of [11. Suppose that "Sound
information - Voice from the other party” event occurs. Naturally, nothing happens because
there is no event analyzer for [11. Next, the event analyzer of the state-hierarchy STM 1.1 of
the "Telephone,” which is a ready state, is called (assuming the concurrent schedule is the
default type). The "Sound information™ is analyzed as event number 1. The action where the
"Busy" event and the active state "Sound information" cross is called. [11.1.1 is called by
inheriting the "Sound information - Voice from the other party” event. The "State the message -
Hang up" action is executed, and "Disconnected” is changed to ready. The event analyzer of
the state-hierarchy STMM1.2 of the "TV" state is called and "Sound information - Voice from the
other party" is analyzed, but there is no hit. The event analyzer of the state-hierarchy
STMHE1.2.1 of "On," which is a ready state, hits "Sound information - Voice from the other party"
as "Voice from the other party." The "Mute" action, located at the cross section of "NORMAL"
and "Voice from the other party,” is executed, and a state transition occurs to "MUTE." Now the
control returns to the parent and waits for the next event. The difference from the state-driven
type is that the event-driven type can specify the processing priority of events. Refer to Chapter
14.2.1.

In the event-driven type, an event hierarchy is called when the action is executed.

In the event-driven type, a state hierarchy is called when the parent's state is ready.
In the state-driven type, an event hierarchy is called when the action is executed.

143

® Hierarchy

In the state-driven type, a state hierarchy is called when the state is ready.

15.11. Hierarchy and department

The task section, main section, library section, device-driver section and device-register section
can be represented by hierarchies. Subroutines, which are covered in Chapter 16, can also be
represented by hierarchies.

_ Task section
Task section Second

First division divician

In-mail and
global
transitions
occur only
within the same
department.

1.1 1.2 221 (222

Interface of arguments and return
values only

300 200

2001 |200.2

Subroutine

300.1) [300.2

Library section

Figure 15- 31 Departments

The task STM and main STM are represented by [1 or .

The library, device driver and device register sections are represented by Oor @.

The subroutine section is represented by A or A.

The [, Oand Aat the root level indicate that it is event-driven and that the child level is an
event hierarchy. However, they indicate that the subroutine section is an event hierarchy even
at the root level. The subroutine takes over the driven type of the caller.

The H, @ and A at the root level indicate that it is state-driven and that the child level is a state
hierarchy. However, they indicate that the subroutine section is a state hierarchy even at the
root level. The subroutine takes over the driven type of the caller.

144

® Hierarchy

15.12. Hierarchy and clone STM
Both the event hierarchy and state hierarchy can be represented by a clone STM.

=1 =1 =1
mi1. 1 [o] (H1. 1 [1] (1. 1 [2]
[1 il 2]

E1 0lo1. 100l |O1. 10 [o] (O1. 10 [0]
Ez |'lo1. 1olol (O1. 10[1] |O1. 10 [0]
Es 12lo1. 10 1] |Oo1. 10 [1] |O1. 10 [2]

Figure 15- 32 Hierarchical clone STM

A multiple of the same state hierarchy cannot be called, since a state hierarchy is part of the
state tree and scheduled by the state scheduler.

15.13. Format of hierarchy

The event hierarchy is represented by [1 and state hierarchy by l. A call of an event hierarchy
is described in the action cell and that of a state hierarchy in the state area. Multiple events can
be called. The calling of multiple state hierarchies is not allowed.

The hierarchy level number is represented as follows:

parent number. child number

The parent number starts with 0. The child number starts with 1. The level numbers for the
event hierarchy and state hierarchy cannot be the same. The child numbers need not
necessarily be sequential, as long as they are unique.

[L): Refer to 12, "Department,” for the format of declaration and call of the hierarchy.

145

® Hierarchy

146

@Subroutine STM

16. Subroutine STM

The subroutine STM is similar to the hierarchical STM. Each department (task section, main

section, library section and device-driver section) can use subroutine STMs. The subroutine

STM can be changed to a clone STM, and also to a hierarchy.

The hierarchical STM and subroutine STM are different in the following ways:

(1) While the hierarchy STM can only make a call through the hierarchy tree, subroutine STM
can be called from anywhere. The state subroutine STM can be called from only one
location, the same as the state hierarchy.

(2) The state control variable can be prepared by the caller side and passed to the subroutine
STM as an argument. The subroutine STM for which the state-control variable is prepared
by the caller side is called an external subroutine. On the other hand, the subroutine STM
for which the state-control variable is prepared internally is called an internal subroutine.

16.1. Call and return of subroutine STM

| + LA 2%

01 A10 A10 A20.]

1.1 A20 | A10.1

011 A10.1 A20.1

A20

Figure 16- 1 Subroutine STM

The hierarchy STM can be called only by the parent-and-child relationship. On the other hand,
subroutine STMs can be called from any location. However, like the hierarchy STM, the call is
allowed from only one location when the state is a subroutine STM. In Figure 16-1, A10 can be
called from only one location, while A 20 can be called from multiple locations. The inheritance
of events is the same as the table in Figure 15-24, in Chapter 15.3. Hierarchical subroutine
STMs can only be called from the parent STM.

147

@Subroutine STM

16.2. Internal subroutine STM

With the internal subroutine STM, the state scheduler can be used because the state-control
variable is prepared internally. Therefore, all driven types, state types and hierarchies can be
used.

16.3. External subroutine STM

With the external subroutine STM, the state scheduler cannot be used because the state-control
variable is prepared externally. Accordingly, the state hierarchy is not allowed for the exclusive-
state STM, which does not use the state scheduler. The event-driven type is used as the driven
type.

Declaration example: int A100[2](char*cpstate, int*ipstate)

Call example: A100[1](p1, externalstate)

The state-control variable is defined both on the caller and receiver sides, and is passed as an
argument.

16.4. Subroutine STM and multitask

Multiple tasks can call the same subroutine STM. The exclusive control for the functions called
from the subroutine STM and accessed variables is executed via the user processing in the
same way as is done by the library STM.

148

OEHSTM system call

17. EHSTM system call
No. | System call Meaning
1 | inmail(stm_name,inmail) Issues in mail.
inmail(stm_level_no,inmail) stm_name: STM name of in-mail destination
stm_level_no: STM level number of in-mail
destination
inmail: Name of issued in mail
2 | zkill(state_name) State transition of concurrent state to DEAD
zkill(state_no) state_name: State name
state no: State number
3 | zalive(state_name,mode) State transition of concurrent state to READY
zalive(state_no,mode) state_name: State name
state_no: State number
mode: Mode specification when READY
D: default/H: history/P: deep history
(*) When the mode is omitted, the P specification is
assumed.
4 | zset(stm_name,state_name) Transition to the specified state (with activity)
zset(stm_level_no,state_no) stm_name: Name of the desired STM for state
transition
stm_level_no: Level number of the desired STM for
state transition
state_name: Name of the state
state no: State number
5 | zseth(stm_name,state_name) Sets history to the specified state (without activity)
zseth(stm_level_no,state_no) stm_name: Name of the desired STM for setting
history
stm_level_no: Level number of the desired STM for
setting history
state_name: State name
state no: State number
6 | bool Checks if the specified state is READY.
zcheck(stm_name,state_name) | stm_name: Name of the desired STM for setting
zcheck(stm_level _no,state_no) history
stm_level_no: Level number of the desired STM for
setting history
state_name: State name
state_no: State number
RETURN:TRUE(READY)
:FALSE(not READY)
7 | zret(p) Returns from the library or interrupt-handler STM.
p: Return value
(*)p can be omitted.
8 | event(task_name,event) Issues an event.
task_name: Name of the destination task of issued
event
event: Name of issued event
9 | zdi(Disables interrupt.
10 | zei() Enables interrupt.
11 | zdil(level) Disables level interrupt.
level: Disables interrupts equal to or lower than the
specified level.
Level 0 is the highest and level 255 is the lowest.
12 | zeil(level) Enables level interrupt.

149

OEHSTM system call

level: Allows interrupts equal to or lower than the
specified level.
Level O is the highest and level 255 is the
lowest.

13 | ztrap(vector_no) Generates a vector interrupt.
vector_no: Generates the specified vector interrupt.

Figure 17- 1 List of EHSTM system calls

The EHSTM system calls from number 8 to 13 depend on the system implemented. Therefore,
the original system calls can also be used. In this case, the CASE tool used to support the
EHSTM design method needs to be compatible with the system call.

17.1. inmail

The inmail sets internal messages in the in-mail buffer. By default, one in-mail buffer is
prepared for each department (in the root STM of the department, if the hierarchy is used).
Also, subroutine STMs are prepared outside the departments. An in-mail buffer could be
provided for each hierarchy STM, if it is not using the default. It is up to the specification of the
CASE tool that supports the EHSTM design method.

In-mail buffer
inmail(01.1, in mail A)
In-mail A «
\—.’/ p| In-mail A

Figure 17- 2 inmail

The naming rule for in mails issued by “in mail” is the same as that for events. Refer to Section
17.6, "event."

150

OEHSTM system call

17.2. zkill/zalive

O Telephone ~+ T
[I] [l e e]
o Telephone e - Ty :
ON
Disconnected On the phone OFF NORMALI|IMUTE
[1 z 3 il [
Status
information ... |¢] O1.1
Message for i
making a phone |1 -~ Dial - -~ - -
call
Voice from 1 5
the other 2 -~ # State the message - Mute -
party Hang up ooz
1
Busy tone 3 -~ ¥ Hang up - - -
| d +
ntereste
program 4 ! d - Turn TV on | < <
3 3
End of
program g d d d * Turn TV off Turn TV off
W]
Faulty . (Telephone)
Telephone | 0 zkill
- Recover
] | I we (Telephone)
Fault . i
A2k T W
T
Recover 3L .| jvel(T %)

Figure 17- 3 zkill/zalive

The concurrent state specified by "zkill" (exclusive states cannot be specified) enters the DEAD
state, which will not be scheduled by the state scheduler. The concurrent state specified by
"zalive" enters the SUSPEND state, which can be scheduled by the state scheduler.

151

OEHSTM system call

17.3. zset/zseth/zcheck

Figure 17- 4 zset/zseth/zcheck

1 "zset(C11,0N)" is identical to "=>ON." When a transition type such as "=>ON(D)" is
specified, it is specified in parentheses () after the transition destination name, such as
"zset(L11,0N(D))." See actions of "NO_TAPE" (state number: 2) and "IN TAPE" (event number:
2). The "=>TAPE(D)" means a transition to "TAPE" using the default type. In this case, the
child state of "TAPE" also makes a transition using the default type. In other words, "STOP"
becomes ready in [11.2. How about the states in [11.1? Since [11.1 is an event hierarchy, it is
not included in the state tree. Therefore, "=>TAPE(D)" has no effect on [11.1. "zseth((J1.1,
PLAY: OFF)" changes the history of [11.1 to "PLAY: OFF." The difference between "zset" and
"zseth" is that "zseth" modifies only the past state, or history, while the transition actually occurs
by "zset" (the same as =>). This changes the READY position of the states when a history or
deep-history transition occurs. The "zcheck" checks whether the specified state is currently

152

oN
L1 OFF THE E—
NO_TAPE ' HEAD | MOTOR ,
R N
0 il 2 3 A B
N Dzzet (O1, 0K £ £ £ £
0OFF 1 £ z=et (1, OFF)
=xTAPIE (M
IN TAPE |2 ! ! zseth(CI1 .1, LY. . OFF) ! !
=xN0_TAPE
pUT TAPE| ! / / z=eth (I .2 sToP)
COMMAND |4 £ £ £ £ 11
PLAY RECORD
01 .1
OFF an aFF Qan
0] 1 2 a
Loy Ay _-, RECORD:
B [¢ =PLAY: . OFF d = OrF
P [1|=sPLavon / / /
RECORD:
*p |2 / { =k, ON. !
IN OPERATION
.-I 2 STOP PAUSE — -
NORMAL FAST REWIND
FORWARD
W] 1 2 3 A
H [|° / ; =HSTOP | =HfSTOP | =STOP
h_ 1 =>iNORMAL ; ; = NORMAL =>]‘NORMAL
NORMAL VORMA oRMAL
b 2| FoRue s syEomwao /| =>Eorwaro
Ny ' _»iREWIND =+ ;REWIND
A4 3] =»REWND ; »sREWIN ! »sREWIN ! ¢
“ 4 / :>|n operation (P) :>_PA_U_‘sIE‘ - :>_PAU-SIE- - :>_PAU-S.E- -
| =>,NER.MALI ; d £ d

OEHSTM system call

READY or not. TRUE is returned if it is ready, otherwise FALSE is returned.

17.4. zret

"zret" returns the control to the called source from the library STM or interrupt handler. But why
is this return different from that of the task and main sections? The library STM is called from
the call source by the function-call type. With the function-call type, the function described in an
event is generated and the STM is called by the function. The "return" described in the library
STM returns to this function. The called library STM might not return to the call source but wait
for an event and process it by itself. To return to the call source, "zret" is used.

FuncA(lpl);

FuncA(int* Ip){
event_no =0; FuncA(int*lp) [0 =>1 |[zret(0)
int ret = act(event_no);
while (until zret is executed){
Obtain event (); EventA il / =>0
Event analyzer (); 1 zret(1)

return (value of zret)g

Figure 17-5 zret

In the example above, the library STM called by FuncA does not return to the call source unless
EventA occurs. When FuncA is called from multiple sources, the FuncA should be designed so
it has a reentrant structure.

The following describes the general concept of device drivers and interrupt handlers. Please
note that this is a general concept, and a philosophy separate from this is required for
supporting individual RTOS.

Device drivers operate under the environment where an RTOS is installed. A device driver is
called by the caller in the form of a device-driver call. When the called device driver returns to
the caller, it returns to the RTOS scheduler. It never returns to the caller task. This is the
difference from the concept of "zret" in the library STM. In the device driver, an event may have
occurred to the task which has higher priority than that of the caller task. The same applies to
the interrupt handler: "zret" is used if the return from the interrupt handler is simply to return the
interrupted task.

153

OEHSTM system call

}Drv (p1);

;

DrvA(int* ip){
event_no = 0;

int ret = act(event_no);
while (until zret is executed){
Obtain event ();

Event analyzer ();

}

L___return(ret)

}

In the above example, the device-driver STM called by DrvA does not return to the caller unless
EventA occurs. Also, the operation is the same as that of the library. The mechanism of putting
the request task into the 10 wait state when the driver call occurs is defined by the specification

Set the return value of zret in ret.

0 1

DrvA(int *Ip) [0] =>1 |zret(0)

> EventA n [|=>0
zret(1)

Figure 17- 6 zretset

of the tool, and is not specified in this document.

154

OEHSTM system call

17.5. event

This generates message events. Each event has a variable type (mail type, synchronized type
or flag type), interrupt type, in-mail type and function-call type. The EHSTM supplies "ztrap" for
generating the interrupt type. Other interrupts depend on the specification of each tool that
supports the EHSTM design method. The in-mail type is generated by “inmail.” The function-
call type is generated by calling a function. For the flag-variable type, writing to a variable
generates an event. The synchronized event (event flag) is substituted by the mail-type event
(message).

Task 1 message queue Task 1 STM
01
Event A > Event A event(task 2,Z:A:X:B:Y:

~N N

Task 2 message queue Task 2 STM

ok 2 messy
S 12

v
=./|x-xE|3:(: X Vv r.1
I > > Y ?.1
x_d/
’Z

Figure 17- 7 event
An event tree (when a frame or hierarchy is used) is represented by a colon(:). The character

string is inherited into the event hierarchy or event frame. The event hierarchy and event frame
analyzes the string to see whether its own event exists.

155

OEHSTM system call

17.6. zdi/zei/zdil/zeil

The disabling and enabling of interrupts is represented by "zdi()" and "zei()," respectively.
The level interrupt can be controlled in the form of "zdil(level)" or "zeil(level)."

"zdil(3)" prohibits interrupts of level 3 and below.

"zeil(3)" allows interrupts of level 3 and below.

Level number 0 is the highest interrupt level and 255 is the lowest level.

Operations of NMI (Non-Maskable Interrupt) and the level interrupt vary, depending on the
CPU. Therefore, detailed specifications for zdi, zei, zdil and zeil follow the specification of the
CASE tool that supports the EHSTM design method. In this case, the handling of the level
number described above also changes.

17.8. ztrap

"ztrap(vector number)" generates vector interrupts.

The vector number ranges from 0 to 255.

The value of a vector number, as well as the combination of a vector number and a level
number, vary according to the specification of the CASE tool that supports the EHSTM design
method.

156

A
action 43
actions and activities
order of 75
action cell
format of 43
activity 67
format of, 77
analysis sequence number 33

C
computer language statement 44
clone STM 121
concurrent brother state

no transition to, 58
concurrent schedule 89
concurrent state 35
concurrent state 37

no transition to, 57

D

deep memorized transition 54
default state 40

default transition 51

department 101

department under RTOS 103
department under non RTOS 102
device register STM 117
device-driver STM 111

dispatch activity 73

divided action cell 48

don't care 49

driven type 95

driven type and action 98

driven type and activity 98

driven type and event 97

driven type and event analyzer 99
driven type and state 98

driven type and transition 98

E
EHSTM
format of, 5
system call 49,149
else event 24
event 155
event 19
event 9
event activity 67
event actual frame 26
event analyzer 79

event analyzer and variable access method 80

event cell
format of, 19

event driven type 95
event frame 19
event hierarchy 125

call and return of, 127
event hierarchy STM call 45
event type 9
event virtual frame 25
event-analyzer end activity 31,69
event-analyzer start activity 31,69
event-hit end activity 31,70
event-hit start activity 31,70
exclusive state 35, 37
external subroutine 148

F

flag event 15, 20

flag variable access method 80
forced transition 63
function-call event 13, 23
function-call event analyzer 85

H
hierarchy and action 139
hierarchy and activity 140
human language statement 44
hierarchy 125

format of, 145
hierarchy and clone STM 145
hierarchy and department 144
hierarchy and driven type 141
hierarchy and event 137
hierarchy and event analyzer 141
hierarchy and state 138
hierarchy and state scheduler 141
hierarchy and transition 140

[

if condition 27

in-mail 150

in-mail analyzer 83
in-mail event 12

in-mail event 20

internal subroutine 148
interrupt event 10, 22
interrupt event analyzer 84
Invalid 44

interrupt handler STM 116

L
library STM 105
library STM call 47

M
main/task STM 104

Index

mail variable access method 80
memorized transition 52
message event 14

mixed events 16

N

NS chart 44

no use 45

no action default/else 32

P
parent-and-child schedule 88

S
state 35, 37
state activity 71
state actual frame 39
state cell

format of, 37
state end activity 40,72
state frame 37
state hierarchy 130

call and return of, 133
state hierarchy STM call 41
state mode activity 40,72
state scheduler 87
state scheduler

format of, 94
state scheduler and activity 92

state scheduler and interrupt event 94
state scheduler and transition 92

state start activity 40,71
state virtual frame 38
state-driven type 96
STM

format of, 3
STM main 123
STM main activity 75

STM main and event driven type 123
STM main and state driven type 124

subroutine STM 147
call and return of 147

subroutine STM and multitask 148

subroutine STM call 47
switch condition 29
synchronized number 59
synchronized state 42

synchronized state and synchronized

transition 61
synchronized transition 59

synchronized variable access method 81

T
transition 51

format of, 65
transition and state type 57
transition range 64
transition symbol 49
transition type 51
tree schedule 91
trigger activity 74
trigger event 23

Y,
variable event analyzer 79
variable memory event 9
variables

how to access, 14

W
wildcard transition 60

X-Z

zdi / zei / zdil / zeil 156
zkill / zalive 151

zret 153

zset / zseth / zcheck 152
ztrap 156

Index

	_CoverP.pdf
	_Contents
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	Index

